
LX8380 Data Sheet

Lexra, Inc.

Revision 1.4

November 21, 2001

Lexra Proprietary and Confidential

LX8380 Data Sheet Revision 1.4.

Lexra Proprietary and Confidential
Copyright 2001 Lexra, Inc.
ALL RIGHTS RESERVED

MIPS, MIPS16, MIPS ABI, MIPS I, MIPS II, MIPS IV, MIPS V, MIPS32, R3000, R4000, and other
MIPS common law marks are trademarks and/or registered trademarks of MIPS Technologies, Inc.
Lexra, Inc. is not associated with MIPS Technologies, Inc. in any way.

SmoothCore and Radiax are trademarks of Lexra, Inc.

Revision 1.4 Lexra Proprietary & Confidential i

LX8380

Table of Contents

1. Product Overview ..1
1.1. Introduction ... 1
1.2. LX8380 Processor Overview .. 3
1.3. System Level Building Blocks ... 5

1.3.1. Simple Memory Management Unit (SMMU) .. 5
1.3.2. Local Memory Interface (LMI) .. 5
1.3.3. Coprocessor Interface (CI) ... 5
1.3.4. Custom Engine Interface (CEI) .. 6
1.3.5. Cache Bus (CBUS) Interface ... 6
1.3.6. Lexra Bus Controller (LBC) .. 6
1.3.7. Block Move Controller (BMC) .. 6
1.3.8. EJTAG Debug Support .. 6
1.3.9. Building Block Integration ... 7

1.4. RTL Core & SmoothCore Licensing Models ... 7
1.5. EDA Tool Support .. 7

2. Architecture ..8
2.1. Hardware Architecture .. 8
2.2. Seven Stage Pipeline ... 9
2.3. RALU Data Path ... 9
2.4. System Control Coprocessor (CP0) .. 9
2.5. High-Performance Context Switch ... 11

2.5.1. New Context Registers ... 11
2.5.2. Reset ... 13
2.5.3. Determining the Number of Contexts in Software ... 13
2.5.4. Initiation of Context Switch ... 13
2.5.5. CSW Instruction ... 14
2.5.6. LW.CSW, LT.CSW and LQ.CSW Instructions ... 14
2.5.7. WD[.CSW] Instructions ... 14
2.5.8. WDLW.CSW, WDLT.CSW and WDLQ.CSW Instructions 14
2.5.9. Pipeline ... 14
2.5.10. New Context Selection ... 15
2.5.11. Example Context Switch for Coprocessor Operation 17
2.5.12. Program Access to New Registers ... 18
2.5.13. Exceptions .. 18

3. RISC Programming Model ...21
3.1. Summary of Basic RISC Instructions ... 21

3.1.1. ALU Instructions .. 22
3.1.2. Load and Store Instructions .. 24
3.1.3. Conditional Move Instructions ... 25
3.1.4. Branch and Jump Instructions .. 26
3.1.5. Control Instructions .. 27
3.1.6. Coprocessor Instructions .. 28

3.2. Opcode Extension Using the Custom Engine Interface (CEI) 30
3.3. Simple Memory Management Unit .. 31

ii Lexra Proprietary & Confidential Revision 1.4

LX8380

3.4. Exception Processing .. 32
3.4.1. Exception Processing Registers ... 33
3.4.2. Exception Processing: Entry and Exit .. 34

3.5. Low-Overhead Prioritized Interrupts .. 35
3.6. Coprocessors ... 36

4. Instruction Extensions ...39
4.1. Context Switch and Data Transfer Operations ... 39
4.2. Bit Field Processing Operations ... 44
4.3. Cross Context Access Operations ... 55
4.4. Checksum Addition .. 57
4.5. LX8380 Instruction Summary .. 58

5. Coprocessor Interface ..59
5.1. Attaching a Coprocessor Using the Coprocessor Interface (CI) 59
5.2. Coprocessor Interface (CI) Signals ... 59
5.3. Coprocessor Write Operations .. 60
5.4. Coprocessor Read Operations ... 60
5.5. Coprocessor Interface and Pipeline Stages ... 61

5.5.1. Pipeline Holds .. 62
5.5.2. Pipeline Invalidation .. 62

6. Local Memory ..65
6.1. Local Memory Overview .. 65
6.2. Cache Control Register: CCTL .. 66
6.3. CACHE Instruction .. 68
6.4. Instruction Cache (ICACHE) LMI ... 68
6.5. Instruction Memory (IMEM) LMI ... 70
6.6. Data Cache (DCACHE) LMI ... 71
6.7. Scratch Pad Data Memory (DMEM) LMI .. 75

7. CBUS Interface ..77
7.1. System Interface Configuration .. 77
7.2. CBUS Interface Write Buffer and Out-of-Order Processing .. 78
7.3. CBUS Line Read Interleave Order ... 78
7.4. CBUS Byte Alignment ... 79
7.5. CBUS Interface Signal List .. 80
7.6. CBUS Transaction Types ... 81
7.7. CBUS Protocol ... 81
7.8. CBUS Transaction Timing Diagrams ... 81

7.8.1. Back-to-Back Single Writes with Busy ... 82
7.8.2. Line Writes ... 82
7.8.3. Back-to-Back Single Read Requests with Busy .. 83
7.8.4. Line Read Request ... 83
7.8.5. Split Read Request ... 84
7.8.6. Write with Split Read Request .. 84
7.8.7. Returning Read Data .. 85
7.8.8. Latency of CBUS Transactions .. 86

8. Lexra System Bus (LBUS) ...87
8.1. Connecting the LX8380 to Internal Devices .. 87
8.2. Terminology ... 88
8.3. Bus Operations .. 88

8.3.1. Single Data Read .. 89

Revision 1.4 Lexra Proprietary & Confidential iii

LX8380

8.3.2. Line Read ... 89
8.3.3. Burst Read .. 89
8.3.4. Single Data Write ... 90
8.3.5. Line Write .. 90
8.3.6. Burst Write ... 90
8.3.7. Split Read ... 90
8.3.8. Write Split Read ... 90
8.3.9. Split Data .. 90

8.4. Signal Descriptions ... 91
8.5. LBUS Commands ... 92
8.6. LBUS Byte Alignment ... 93
8.7. Split Transactions ... 93
8.8. Lexra Bus Controller .. 94

8.8.1. LBC Commands ... 95
8.8.2. Write Buffer ... 95
8.8.3. LBC Read Buffer ... 95

8.9. Transaction Descriptions .. 96
8.9.1. Single Data Read with No Waits .. 97
8.9.2. Single Data Read with Target Wait .. 98
8.9.3. Line Read with No Waits ... 98
8.9.4. Line Read with Target Waits ... 99
8.9.5. Line Read with Initiator Waits ... 100
8.9.6. Burst Read .. 100
8.9.7. Single Data Write with No Waits ... 100
8.9.8. Single Data Write with Waits ... 101
8.9.9. Line Write with No Waits .. 101
8.9.10. Line Write with Target Waits ... 102
8.9.11. Line Write with Initiator Waits .. 103
8.9.12. Burst Write ... 103
8.9.13. Split Read command .. 103
8.9.14. Write Split Read ... 104
8.9.15. Split Data .. 105

8.10. Ordering Rules with Split Transactions .. 105
8.11. LBC Signals .. 106
8.12. Arbitration ... 107

8.12.1. LBUS Rules .. 107
8.12.2. LBC Behavior .. 107

8.13. Connecting the LBC to LBUS .. 107

9. Block Move Controller (BMC) ...109
9.1. BMC Overview ... 109
9.2. Transfers ... 110
9.3. Transactions .. 110
9.4. Transaction Sequence Due to Transfer Class ... 111
9.5. BMC Per-Channel Registers ... 112
9.6. BMC Global Registers .. 114
9.7. Per-Channel Register Set Selection .. 115
9.8. Transfer Completion ... 115
9.9. CPU-BMC arbitration ... 116
9.10. Software Responsibility for Transfer Requests .. 116
9.11. Example Transfer Flow .. 116

iv Lexra Proprietary & Confidential Revision 1.4

LX8380

10. EJTAG Debug ..119
10.1. Overview ... 119

10.1.1. IEEE JTAG-Specific Pinout ... 120
10.2. Program Counter (PC) Trace .. 121

10.2.1. PC Trace DCLK - Debug Clock .. 121
10.2.2. PC Trace PCST - Program Counter Status Trace .. 121
10.2.3. PC Trace TPC - Target Program Counter .. 122
10.2.4. Single-Processor PC Trace Pinout ... 122
10.2.5. Vectored Interrupts and PC Trace .. 122
10.2.6. Demultiplexing of TDO and TDI During PC Trace 123

10.3. Data Break Exceptions for LX8380 ... 123
10.3.1. Data Break Data Matches on LBus Split Transactions 123
10.3.2. Data Breaks on Write Descriptor Accesses .. 123
10.3.3. Support for the Load-Twin Instruction .. 123

Appendix A. Instruction Formats ...125
A.1. Major Opcodes .. 125
A.2. LEXOP2 Instructions .. 126
A.3. COP0 Instructions ... 129
A.4. SPECIAL Instructions .. 130

Appendix B. Lconfig Forms ...133
B.1. Configuration Options for the LX8380 Processor .. 133

Appendix C. Port Descriptions ..135

Appendix D. Pipeline Stalls ..143
D.1. Stall Definitions .. 143
D.2. Instruction Groupings ... 143
D.3. Non-Sequential Program Flow Issue Stalls .. 143
D.4. Load/Store Rules .. 144
D.5. Mac Ops interlock matrix ... 145
D.6. MVCz Stall ... 145
D.7. TLBW Stall ... 145
D.8. MOVECX Stall ... 145
D.9. MMU Stalls .. 145
D.10. Cache Miss Stalls .. 146
D.11. Pipeline Diagrams for Non-Sequential Program Flow Issue Stalls 147
D.12. Pipeline Diagram for Mac Ops Interlock Stall ... 148
D.13. Pipeline Diagram for MVCz Stall .. 148
D.14. Pipeline Diagram for TLBW Stall .. 148
D.15. Pipeline Diagrams for DTLB Stalls .. 149
D.16. Pipeline Diagrams for Cache Misses .. 150

Revision 1.4 Lexra Proprietary & Confidential v

LX8380

List of Tables

Table 1: EDA Tool Support .. 7
Table 2: CP0 Registers.. 10
Table 3: Extended CP0 Registers.. 10
Table 4: Context Status Register Detail .. 13
Table 5: Scheduler Ports ... 16
Table 6: ALU Instructions .. 22
Table 7: Load and Store Instructions .. 24
Table 8: Conditional Move Instructions ... 25
Table 9: Branch and Jump Instructions... 26
Table 10: Control Instructions .. 27
Table 11: Coprocessor Instructions... 28
Table 12: Custom Engine Interface Operations.. 30
Table 13: SMMU Address Translation... 31
Table 14: List of Exceptions ... 32
Table 15: Prioritized Interrupt Exception Vectors.. 36
Table 16: Context Switching Instructions... 40
Table 17: Bit Field Processing Instructions .. 45
Table 18: Hash Instruction Key Bit Definition... 53
Table 19: Cross Context Access Instructions ... 56
Table 20: Checksum Addition Instructions ... 57
Table 21: Instruction Summary... 58
Table 22: Coprocessor Interface Signals .. 59
Table 23: Local Memory Interface Modules .. 66
Table 24: ICACHE Configurations... 69
Table 25: ICACHE RAM Interfaces... 69
Table 26: IMEM Configurations... 70
Table 27: IMEM RAM Interfaces... 71
Table 28: DCACHE Configurations... 72
Table 29: DCACHE RAM Interfaces ... 72
Table 30: Data Cache Operations and Results.. 74
Table 31: DMEM Configurations... 75
Table 32: DMEM RAM Interfaces ... 76
Table 33: Line Read Interleave Order... 79
Table 34: CBUS Byte Lane Assignment .. 79
Table 35: CBUS Signal List.. 80
Table 36: Maximum Number of Outstanding Split Reads ... 84
Table 37: Line Read Interleave Order... 89
Table 38: LBUS Signal Description ... 91
Table 39: LBUS Byte Lane Assignment... 93
Table 40: LBUS GTID Fields... 94
Table 41: LBUS Commands Issued by the LBC .. 95
Table 42: LBC Interface Signals... 106
Table 43: EJTAG Pinout... 120
Table 44: EJTAG AC Characteristics... 120
Table 45: EJTAG Synthesis Constraints... 120
Table 46: Single-Processor PC Trace Pinout.. 122
Table 47: Single-Processor PC Trace AC Characteristics .. 122
Table 48: Major Opcode Instruction Formats... 125
Table 49: Major Opcode Bit Encodings ... 125

vi Lexra Proprietary & Confidential Revision 1.4

LX8380

Table 50: LEXOP2 Load Instruction Formats.. 126
Table 51: LEXOP2 Write Descriptor Instruction Formats ... 126
Table 52: LEXOP2 Context, Checksum and Bit Field Formats ... 127
Table 53: Cross Context Move Format... 128
Table 54: LEXOP2 Subop Bit Encodings... 128
Table 55: COP0 Instruction Formats .. 129
Table 56: COP0 Subop Bit Encodings.. 129
Table 57: SPECIAL Instruction Formats... 130
Table 58: SPECIAL Subop Bit Encodings ... 130
Table 59: SPECIAL2 Instruction Formats.. 130
Table 60: SPECIAL2 Subop Bit Encodings ... 131
Table 61: Configuration Options .. 133
Table 62: LX8380 Processor Port Summary .. 135
Table 63: Instruction Groupings For Stall Definition... 143

Revision 1.4 Lexra Proprietary & Confidential vii

LX8380

List of Figures

Figure 1: LX8380 Processor Overview.. 3
Figure 2: Processor Core Module Partitioning... 8
Figure 3: Context Associated Registers ... 11
Figure 4: Insert and Extract Operations (Straddle Case).. 45
Figure 5: Packet Field Compaction with Variable Alignment ... 52
Figure 6: Coprocessor Write .. 60
Figure 7: Coprocessor Read ... 61
Figure 8: Exception During Coprocessor Read.. 63
Figure 9: Invalidation of Coprocessor Read... 63
Figure 10: LX8380 System Interface Configurations .. 77
Figure 11: CBUS Back-to-Back Single Writes with Busy... 82
Figure 12: CBUS Line Write.. 83
Figure 13: CBUS Back-to-Back Single Read Requests with Busy.. 83
Figure 14: CBUS Line Read Request... 83
Figure 15: CBUS Split Read Requests... 84
Figure 16: CBUS Write with Split Read Request .. 85
Figure 17: CBUS Read Data and DBUSY... 85
Figure 18: Read Data for a Line Read Request.. 86
Figure 19: Latency of CBUS Transactions. ... 86
Figure 20: Lexra System Bus (LBUS) Diagram .. 87
Figure 21: Block Move Controller ... 109

viii Lexra Proprietary & Confidential Revision 1.4

LX8380

Revision 1.4 Lexra Proprietary & Confidential 1

LX8380 Section 1. Product Overview

1. Product Overview

1.1. Introduction

This data sheet describes Lexra’s LX8380 processor core, a RISC network processor developed for
Intellectual Property (IP) licensing. The LX8380 is a carefully engineered extension to the industry-standard
MIPS-I® ISA. The major subsystems are: the CPU core, Local Memory Interfaces (LMI), the Block Move
Controller (BMC) and LBus Controller (LBC). The technology includes optional interfaces to a customer-
defined Coprocessor (CI2) and Custom Engine (CE) that provide extensions to the MIPS ISA. The local
instruction memories and data memories may include caches and fixed RAM; the sizes are configurable. The
figure also highlights the LX8380 multi-context register file to support fast context switching. Additional
LX8380 extensions include new bit-field operations for efficient packet header processing.

Network communications systems are characterized by demanding, real-time performance requirements.
Typically, system designers have addressed these requirements with custom ASICs, off-the-shelf processors,
and PLDs. The explosive growth in the size and bandwidth of the Internet has recently stimulated
semiconductor companies to develop a new type of product, called a Network Processor Unit (NPU), to serve
these applications. These ICs incorporate multiple programmable cores and specialized peripherals.
Compared to ASIC development, NPUs offer the system designer faster time-to-market and flexibility to
implement differentiated services in software; compared to general-purpose, off-the-shelf components, NPUs
offer the promise of lower cost and superior performance through architectural specialization. LX8380 is a
scalable processor with the specialized architectural features needed for high-performance packet processing
for a wide variety of new products.

The time required to process packets for IP routing and classification is dominated by long latency
operations, such as table lookups from large memories and buffer accesses. However, a distinguishing feature
of network communications systems is that subsequent packets are readily available for independent
processing. Therefore, a fast context switch can be exploited to hide the memory latency. LX8380 includes a
configurable number (1-8) of general register sets and program counters, along with instructions for fast
context switching. This enables multiple software threads to efficiently execute on a single processor. A
thread is de-activated under software control either (i) unconditionally, (ii) when a load with context switch
instruction is coded for a long latency load, or (iii) when a command is written to a shared system device.

Following a context switch, the CPU activates a new thread from the pool of ready threads. The context
switch does not introduce stall cycles. Because the new thread has an independent general register set, it can
quickly resume processing. To avoid stalling the new thread while the previous thread’s data transfer
completes, the LX8380 incorporates a dedicated port to the processor’s data memory for the transfer of
packet data. In addition, the memory system is non-blocking, permitting local accesses and cache hits to
operate in parallel with one outstanding global access per context. With this architecture, context switches
may be used frequently to achieve optimal performance.

Packet processing also requires frequent access to bit-fields in the packet header that are not byte-aligned. For
this reason, LX8380 has extended the MIPS-I® Instruction Set Architecture (ISA) to include a complete set
of bit-field operations for field extract, insert, set and clear. Deterministic allocation of real-time is another
important problem in network communications software. This problem is compounded by multi-processing.
For this reason, the LX8380’s configuration options include dedicated (uncached) local instruction and data
memories for real-time critical instructions and data in order to avoid cache miss penalties.

2 Lexra Proprietary & Confidential Revision 1.4

Section 1. Product Overview LX8380

Features introduced in Lexra’s RISC product line support System-on-Chip (SoC) design, including customer-
defined Coprocessors and customer extensions to the MIPS ISA, are standard in the LX8380. Configuration
options include Enhanced JTAG (EJTAG) support for debug and In-Circuit Emulation (ICE).

Because the LX8380 executes the MIPS instruction set, a wide variety of third-party software tools are
available including compilers, operating systems, debuggers and in-circuit emulators. The assembler
extensions and a cycle accurate Instruction Set Simulator (ISS) are supplied by Lexra. Programmers can use
“off-the-shelf” C Compilers for initial coding; then replace performance-critical loops with optimized
assembler code.

Code development tool support is provided by Lexra and by third-parties for GNU tools and by GreenHills
Software for the MULTI 2000 IDE.

Key Features

• Complete Processor Core

• High-performance 7-stage pipeline.
• Executes MIPS-I ISA (except unaligned loads, stores).
• Executes Lexra’s network processing extensions.

• High performance context switch.
• Bit field manipulation.
• Dual one’s complement addition.
• Hash key formation.
• Jump tables.

• Extensive third-party tool support.

• High-Performance Context Switch

• Processor provides 1-8 contexts (the number is customer-configurable).
• Independent program counter, status, and general registers for each context.
• No wasted cycles for context switch.
• Context switch initiated by program.
• Thread re-activation based on completion of data transfer, asynchronous external

events or program control.

• System Level Building Blocks

• Simplified MMMU (SMMU)
• Local instruction and/or cache interfaces, configurable sizes.
• Local data memory and/or cache interfaces, configurable sizes.
• Optional customer-defined coprocessors.
• Optional customer-defined instruction extensions.
• System bus controller.
• Optional Block Move Controller (BMC)
• Optional EJTAG Draft 2.0.0 support for debugging.

• Portable RTL Model

• Available as a synthesizable RTL.
• Portable to any 0.18µm, 0.15µm or 0.13µm process.
• Support for any third-party logic and SRAM libraries.
• Foundry partners include TSMC and UMC.

Revision 1.4 Lexra Proprietary & Confidential 3

LX8380 Section 1. Product Overview

• Easy ASIC Integration

• Exclusive use of positive-edge clocking.
• Fully synchronous design.
• System Level Building Blocks provide easy ASIC interfaces.
• Supports for popular EDA tools.
• User-configurable local memory, reset method, clock distribution.
• User-configurable EJTAG breakpoints.
• Over 30 other configuration options.

1.2. LX8380 Processor Overview

The LX8380 is a RISC processor that executes the MIPS-I instruction set1 along with Lexra’s networking
extensions. The clocking, pipeline structure, pin-out, and memory interfaces have all been developed by
Lexra to reflect system-on-silicon design needs, deep sub-micron process technology, as well as design
methodology advances.

Figure 1 shows the structure of the LX8380 processor.

Figure 1: LX8380 Processor Overview

MIPS I Execution. The LX8380 supports the MIPS-I programming model. Two source operands can be
supplied and one destination update performed per cycle. The second operand is either a register or 16-bit
immediate. The instruction set includes a wide selection of ALU operations executed by the RALU, Lexra’s
proprietary register based ALU. The RALU also generates memory addresses for 8-bit, 16-bit and 32-bit
register loads from (stores to) memory by adding a register base to an immediate offset. An extension to the
MIPS ISA allows a pair of 32-bit registers to be loaded from memory. Branches are based on comparisons
between registers, rather than flags, and are therefore easy to relocate. Optional links following jump or
branch instructions assist with subroutine programming.

Context Switching.The LX8380 incorporates up to eight independent 32 x 32b general register sets called
contexts. Execution can switch between independent tasks, called threads. This context switch is performed
with no wasted cycles and prevents stalls while waiting for data from on-chip or off-chip shared resources.
Context switches occur under program control when data is loaded from shared resources. A background
load of 32-bits, 64-bits or 128-bits from a shared resource can be accomplished with a single Load

1. The MIPS unaligned load and store instructions (LWL, LWR, SWL, SWR) are not supported.

Inst
RAM

Icache
RAM

Inst LMI

Data LMI

Data
RAM

Dcache
RAM

LX8380
CPU
Core

Custom
Engine

CIs

CEI
Data Bus

Coprocessors (1-2)

LBC

System
Bus

denotes customer logic

Block Move
Controller

(BMC)

Debug
Probe

EJTAG

Instruction Bus

CBI
CBUS

(optional)

4 Lexra Proprietary & Confidential Revision 1.4

Section 1. Product Overview LX8380

instruction.

A special class of instructions, called Write Descriptor (WD), allow a command or data to be directed to a
shared resource, including a request for up to 128 bits of return data. This allows shared devices to efficiently
perform operations that atomically examine and modify memory state. The processor performs the WD
operation in a single instruction cycle without stalls by using a context switch. When a context switch occurs,
the program counter of the suspended thread is stored in a CP0 register while execution switches to another
thread. The next thread is automatically selected from the pool of ready-to-run threads of equal priority, using
a windowed round-robin algorithm.

ISA Extensions for Network Processing.Lexra has added 32 new instructions to the LX8380 to optimize
for high performance packet processing. Bit-field operations are included to accelerate lookup-key formation
used in packet classification. Specialized hash functions, table lookup instructions and one’s-complement
addition are also included.

Many of the new instructions are used to facilitate high-speed data movement, fundamental to network
communications. 64-bits can be loaded from local data RAM into a general register pair in a single cycle. Up
to 128-bits can be transferred from shared memory by a single instruction. The Lexra extensions also support
atomic read-modify-write operations on the shared memories. Latencies in access to shared memory, on-chip
or off-chip, can be hidden using a zero-overhead switch between the eight independent hardware contexts.

Pipeline. LX8380 instructions are executed by a seven-stage pipeline that has been designed so that all
transactions internal to the LX8380, as well as at the interfaces, occur on the positive edge of the processor
clock. Two-phase clocks are not used. The seven-stage pipeline allocates a full address-register-to-data-
output-register clock cycle to both local instruction access and data access. As a result, the memories have
the best timing specification possible and are decoupled from critical paths internal to the processor.

Exception Handling. The MIPS R3000 exception model is supported. Exceptions include both instruction-
synchronoustraps as well as hardware and softwareinterrupts. The CP0 STATUS register controls the
interrupt mask and operating mode. Exceptions are prioritized. When an exception is taken, control is
transferred to the exception vector, the current instruction address is saved in the EPC register, and the
exception source is identified in the CP0 CAUSE register. In the event of an address error exception, the CP0
BADVADDR register holds the failing address. For the MIPS exceptions, a program located at the exception
vector identifies the cause of the exception, and transfers control to the application-specific handler. In
addition to the MIPS R3000 exceptions, the LX8380 supports up to eight prioritized, vectored interrupts to
meet hard real-time response requirements.

Coprocessor Instructions.The LX8380 supports the MIPS-I Coprocessor instructions These include moves
to and from the 32-bit Coprocessor general registers and control registers (MTCz, MFCz, CTCz, CFCz), 32-
bit Coprocessor loads and stores (LWCz, SWCz) and branches based on Coprocessor condition flags (BCzT,
BCzF).

Performance and Ease of Use. The LX8380 provides excellent price/performance and time-to-market.
There are two strategies used to achieve this:

• Deliver simple building blocks outside the processor core to enable system level
customizations such as coprocessors, application specific instructions, memories, and
busses.

• Deliver either a fully synthesizable Verilog source model or fully implemented hard core
(called SmoothCore) for customer-selected foundries.

Section 1.3 describes the System Level Building Blocks, and Section 1.4 describes the licensing models.

Revision 1.4 Lexra Proprietary & Confidential 5

LX8380 Section 1. Product Overview

1.3. System Level Building Blocks

The LX8380 processor is designed to easily fit into different target applications. It provides the following
building blocks.

• A Simplified Memory Management Unit (SMMU) for deeply embedded applications.

• A flexible Local Memory Interface (LMI) that supports instruction cache, instruction
RAM, data cache and data RAM.

• Up to two Coprocessor Interfaces (CI).

• An optimized Custom Engine Interface (CEI).

• A simplified cache bus interface (CBUS) for simplified connection to peripheral devices
and main memory.

• An optional Lexra Bus Controller (LBC) and Lexra Bus (LBUS) protocol for connection
to peripheral devices and main memory.

• An optional Block Move Controller (BMC) supporting up to eight DMA channels for
background transfers between local data memory and the system bus.

The following sections discuss each of these system building block interfaces.

1.3.1. Simple Memory Management Unit (SMMU)

The LX8380 SMMU is designed for embedded applications using a single address space. Its primary
function is to provide memory protection between user space and kernel space. The SMMU is consistent
with the MIPS address space scheme for User/Kernel modes, mapping, and cached/uncached regions.

The optional LX8380 MIPS R3000-style MMU is designed to permit code to run under major operating
systems such as Linux, that require a Translation Lookaside Buffer (TLB) for robust protection of third-party
programs and data.

1.3.2. Local Memory Interface (LMI)

The LX8380’s Harvard Architecture provides Local Memory Interfaces (LMIs) that support instruction
memory and data memory. Synchronous memory interfaces are employed for all memory blocks. The LMI
block is designed to easily interface with standard memory blocks provided by ASIC vendors or by third-
party library vendors.

The LMIs provide direct-mapped or two-way set associative instruction cache interface, and direct-mapped
or two-way set associative data cache interface. The data cache can be selected to be either write-through or
write-back. The tag compare logic as well as a cache replacement algorithm are provided as part of the LMI.
One of the instruction cache sets may be locked down as un-swappable local memory. Lexra’s seven-stage
execution pipeline provides output registers in both the instruction and data LMIs so that the memories have
the best timing specification possible and are decoupled from critical paths internal to the processor.

1.3.3. Coprocessor Interface (CI)

Lexra supplies an optional Coprocessor Interface (CI) for applications that use a custom coprocessor. Up to
two CIs may be employed in one design. The Coprocessor Interface “eavesdrops” on the instruction bus. If a
coprocessor load (LWCz) or “move to” (MTCz, CTCz) instruction is decoded, data is passed over the data

6 Lexra Proprietary & Confidential Revision 1.4

Section 1. Product Overview LX8380

bus into a CI register, then supplied to the customer-designed coprocessor. Similarly, if a coprocessor store
(SWCz) or “move from” (MFCz, CFCz) instruction is decoded, data is obtained from the coprocessor and
loaded into a CI register, then transferred onto the data bus in the following cycle. The CI includes a data bus,
five-bit address, and independent read and write selects for coprocessor general registers and control registers.
The LX8380 pipeline and Harvard Architecture permit single cycle coprocessor access and transfer. An
application-defined coprocessor condition flag is synchronized by the CI then passed to the LX8380
sequencer for testing in branch instructions.

1.3.4. Custom Engine Interface (CEI)

The LX8380 includes a Custom Engine Interface (CEI) that the application may use to extend the MIPS I
ALU opcodes with application-specific or proprietary operations. Similar to the standard ALU, the CEI
supplies the Custom Engine two input 32-bit operands, SRC1 and SRC2. One operand is selected from the
Register File. Depending on the most significant 6 bits of the opcode, the second operand is either selected
from the Register File or is a 16-bit sign-extended immediate. The opcode is locally decoded by the custom
engine, and following execution by the custom engine, the result is returned on the 32-bit result bus to the
LX8380. To support multi-cycle operations, a stall input is included in the interface.

1.3.5. Cache Bus (CBUS) Interface

The CBUS interface is a simple signalling layer between the LX8380 processor's cache controllers and the
optional LX8380 system bus interface, the LBC. LX8380 applications that do not require the full feature set
of the LBC, or that connect to a bus protocol other than LBUS, may optionally eliminate the LBC and
provide their own system bus interfaces or devices that connect directly to the LX8380 using the CBUS
interface.

1.3.6. Lexra Bus Controller (LBC)

The optional Lexra Bus Controller (LBC) is the interface between the LX8380 and system bus devices,
which may include DRAM and various peripherals. The LBC implements Lexra’s LBUS protocol, a non-
multiplexed, non-pipelined bus to provide a simple bus protocol for design integration. On the processor side,
the LBC connects to the LX8380 CBUS. On the system side, the LBC is designed to easily interface to
industry standard bus protocols, such as PCI, USB, and FireWire. The LBC supports synchronous modes
with the LBUS operating at full CPU speed or half CPU speed, and an asynchronous mode that allows the
LBUS to be clocked at any speed independent of the CPU speed.

1.3.7. Block Move Controller (BMC)

The LX8380’s BMC performs data transfers between the processor’s local data memory and the system bus.
These transfers may occur in either direction, and are set up using the coprocessor registers of the BMC.
Transfer length may be 1-262,144 (256K) bytes, with byte granularity in the addresses and transfer size. Data
transfer takes place in the background without stalling the processor.

The BMC supports up to eight DMA channels and is implemented as an optional Lexra-supplied
Coprocessor 3. Completion of block moves can be synchronized with the program using conditional branch
instructions, context switches or interrupts.

1.3.8. EJTAG Debug Support

The LX8380 provides optional EJTAG (Enhanced JTAG) debug support. EJTAG allows third party hardware
probes and debug software to access the processor and its attached devices in the same way the processor
would access those devices. EJTAG also supports single-step instruction execution, instruction breakpoints
and data breakpoints.

Revision 1.4 Lexra Proprietary & Confidential 7

LX8380 Section 1. Product Overview

1.3.9. Building Block Integration

The LX8380 configuration script,lconfig, provides a menu of selections for designers to specify building
blocks needed, number of different memory blocks, target speed, and target standard cell library. Next, the
configuration software automatically generates a top level Verilog model, makefiles, and scripts for all steps
of the design flow.

For testability purposes, all building blocks contain scan control signals. The Lexra synthesis scripts support
optional scan insertion, which allows ATPG testing of the entire LX8380 core.

1.4. RTL Core & SmoothCore Licensing Models

Lexra delivers LX8380 as either an RTL Model or SmoothCore.

RTL Model: For standard ASIC designs, the RTL Model is fully synthesizable and scan-testable Verilog
source code, and may be targeted to any ASIC vendor’s standard cell libraries. In this case, the designer may
simply follow the ASIC vendor’s design flow to ensure proper sign-off. In addition to the Verilog source code
and system level test bench, Lexra provides synthesis scripts as well as floor plan guidelines to maximize the
performance of the LX8380.

SmoothCore:For COT designs that are manufactured at foundries such as TSMC and UMC, a SmoothCore
port is the quickest, lowest cost, and best performance choice. Lexra provides a porting service that delivers a
fully implemented and verified hard macro for a customer-specific configuration, foundry and library. All
data path, register file, and interface optimizations are performed by Lexra to ensure the smallest die size and
fastest performance possible. A scan based test pattern is provided for fault coverage during manufacturing
tests.

1.5. EDA Tool Support

Lexra supports mainstream EDA software, so designers do not have to alter their design methodology. The
following is a snapshot of EDA tools currently supported:

Table 1: EDA Tool Support

Design Flow Tools Supported

Simulation Synopsys VCS
Cadence Verilog XL
Cadence NC-Verilog

Synthesis Synopsys Design Compiler

Static Timing Synopsys PrimeTime

DFT Synopsys TetraMax

P&R Avant! Apollo II

Revision 1.4 Lexra Proprietary & Confidential 8

LX8380 Section 2. Architecture

2. Architecture

2.1. Hardware Architecture

The LX8380 processor includes the Control Processor (CP0) and the register file and ALU (RALU). CP0
includes instruction address sequencing and exception processing. The RALU performs ALU operations and
generates data addresses.

Figure 2: Processor Core Module Partitioning

Multi-Context
Register File

n x 32 x 32-bit
r0=0

Instruction Address and Control

ALU
PRiD

Exception
Processing Logic

PC and
Sequencer

Instructions

Data

Data Address
and Control

Flags, Traps
and Jump
Address

CXSTATUS[n]
CXPC[n]

RALUCP0

Revision 1.4 Lexra Proprietary & Confidential 9

LX8380 Section 2. Architecture

2.2. Seven Stage Pipeline

The LX8380 has a seven stage pipeline:

The seven stage pipeline provides a complete processor cycle for the instruction memory and data memory
accesses, allowing use of larger memories and 2-way set-associative caches without degrading cycle time.
The seven pipeline stages allow the processor clock speed to scale with current silicon processes.

A two cycle penalty is incurred on branch prediction failure. However, the LX8380’s conditional move
instructions can be used to avoid any wasted cycles in the control of real-time critical loops.

2.3. RALU Data Path

The LX8380 RALU incorporates a multi-context 32x32b four-port register file. One write port is dedicated to
32-bit register file loads from the Data Bus (Loads, MFCz, CFCz - moves from coprocessor). The remaining
three ports (2r/1w) are used for the other operations, such as ALU operations. In the LX8380, the two write
ports are also used to support 64-bit loads from the Data Bus.

The instruction set includes a wide selection of ALU operations executed by the RALU. In the case of ALU
operations, one operand is a register and the second operand is either a register or 16-bit immediate value.
The immediate value is sign-extended or zero-extended, depending on the operation. Signed adds and
subtracts can generate the arithmetic overflow trap, Ov, which is sampled by CP0.

The RALU also generates the virtual memory addresses for register loads from (stores to) memory by adding
a register base to a sign-extended 16-bit immediate offset. Data address errors generate theAdEL, AdEStrap
flags which are sampled by CP0. The LX8380 employsBig-Endian memory addressing.

Branches are based on comparisons between registers, rather than implicit flags, permitting the programmer
more flexibility. From these comparisons, the RALU generatesN andZ flags for sampling in CP0. Branch or
jump instructions may optionally store in a general purpose register the address of the instruction at the
memory location following the branch delay slot of a jump or a branch which is taken. This register, called
thelink, holds the return address following a subroutine call.

Coprocessor operations permit moves of the general purpose registers to/from the LX8380’s Block Move
Controller or to optional application-specific coprocessors (one or two). These transfers occur over the Data
Bus, similar to data memory loads and stores.

2.4. System Control Copr ocessor (CP0)

The System Control Coprocessor (CP0) is responsible for instruction address sequencing and exception
processing.

For normal execution, the next instruction address has several potential sources: the increment of the previous
address, a branch address computed using a pc-relative offset, or a jump target address. For jump addresses,
the absolute target can be included in the instruction, or it can be the contents of a general-purpose register
transferred from the RALU.

stage name actions
1 I Instruction fetch
2 D Decode instruction
3 S Source operand fetch (register file read)
4 E Execute ALU operations memory address generation
5 A Access data memory (read data cache store and tags)
6 M Memory data select and format
7 W Write data to register file and memory

10 Lexra Proprietary & Confidential Revision 1.4

Section 2. Architecture LX8380

Branches are assumed (or predicted) to be taken. In the event of prediction failure, two stall cycles are
incurred and the correct address is selected from a special “backup” register. Statistics from several large
programs suggest that these stalls will degrade average LX8380 throughput by several percent. However, the
net effect of the LX8380’s branch prediction on performance is positive because this technique eliminates
certain critical paths and therefore, permits a higher speed system clock.

If an exceptionoccurs, CP0 selects one of several hardwired vectors for the next instruction address. The
exception vector depends on the mode and specific trap which occurred. This is described further in
Section 3.4, Exception Processing.

The following registers, which are visible to the programming model, are located in CP0:

Table 2: CP0 Registers

EPC, STATUS, CAUSE, and BADVADDR are described in the Section 3.4. The DREG, DEPC and
DESAVE registers are used by EJTAG probe debug software, and are described in the EJTAG 2.0.0
specification. The PRID register is a read-only register that allows software to identify the Lexra processor
model. The CCTL register is a Lexra defined CP0 register used to control the instruction and data memories,
as described in Section 6.2.

The contents of the registers listed in Table 2 are transferred to and from the RALU’s general-purpose register
file by the MFC0 and MTC0 instructions, as described in Section 3.1.6.

The LX8380 implements extended CP0 registers that provide additional functions summarized in Table 3.

Table 3: Extended CP0 Registers

The registers listed in Table 3 are described in detail in Section 3.5. The contents of these registers are
transferred to an from the RALU’s general-purpose register file by the MFLXC0 and MTLXC0 instructions,
as described in Section 3.1.6.

CP0 register Number Function

BADVADDR 8 Holds bad virtual address if address exception error occurs

STATUS 12 Interrupt masks, mode selects

CAUSE 13 Exception cause

EPC 14 Holds address for return after exception handler

PRID 15 Processor ID (read-only) 0x0000ce01 for LX8380

DREG 16 EJTAG debug control

DEPC 17 EJTAG debug exception PC

CCTL 20 Instruction and data memory control

DESAVE 31 EJTAG debug save register

CP0 register Number Function

ESTATUS 0 Interrupt masks for prioritized vectored interrupts.

ECAUSE 1 Interrupt pending flags for prioritized vectored interrupts.

INTVEC 2 Address of vector table for prioritized vectored interrupts.

Revision 1.4 Lexra Proprietary & Confidential 11

LX8380 Section 2. Architecture

2.5. High-Performance Context Switch

The LX8380 CPU incorporates multiple, independent register sets calledcontexts. As a result, execution can
switch between independent software tasks, calledthreads, each running in its own context. This switch is
called acontext switch. Conventional RISC architectures perform context switching in software. However,
packet processing demands special hardware support to achieve high performance context switching. The
LX8380 provides a zero-overhead context switch. That is, an instruction can be executed forsomecontext in
every cycle.

2.5.1. New Context Registers

The number of contexts is customer-defined using Lexra’slconfigutility. One to eight contexts are supported
by the LX8380 RTL (default is one context). Each context includes:

• (32) general registers (r0 - r31)

• (1) 32-bit CXPC (program counter)

• (1) 16-bit CXSTATUS register

The general registers are located in the RALU. The CXPC and CXSTATUS registers are located in CP0. In
addition, a 3-bit register MOVECX is located in CP0, and is accessible with the MTLXC0/MFLXC0
instructions (variants of the MIPS standard MTC0/MFC0 instructions). MOVECX holds the encoded
number of the target context for the MFCXC/MTCXC and MFCXG/MTCXG instructions, which can access
the registers of any context. These new registers are illustrated in Figure 3. The currently active context
number is an implicit read-only value that is accessed with the MYCX instruction.

Figure 3: Context Associated Registers

The MIPS I ISA (except for unaligned Loads and Stores) is fully supported in each context. As a result, the
general register set for each context is fully consistent with the MIPS ISA requirements. For example, r0 is
hard wired to 0 and r31 is an implied “link” for certain branch and jump instructions in every context. Up to
two source registers and one destination register may be specified for an ALU operation, again consistent

Multi-context Register FileContext Control Registers

Context 7
(R0 - R31)

Context 1
(R0 - R31)

Context 0
(R0 - R31)

Context 7
CXPC CXSTATUS

LXC0 Control Register

MOVECX

Context 1
CXPC CXSTATUS

Context 0
CXPC CXSTATUS

•
•
•

•
•
•

12 Lexra Proprietary & Confidential Revision 1.4

Section 2. Architecture LX8380

with the MIPS programming model.

CXPC holds the 32-bit virtual address of the next instruction to be fetched by the associated context. The 16-
bit CXSTATUS register indicates whether the context is waiting for data transfer or I/O events. CXSTATUS
also permits program-assigned priority for context re-activation.

The CXSTATUS register fields are identified in Table 4. Each field is explained below. The “Rd/Wr” or “Rd
Only” indications apply to access using the MTCXC and MFCXC instructions. The effects of other hardware
and software events on the fields is shown explicitly and explained in the following paragraphs.

The CXSTATUS WAIT-EVENT field provides eight event flags that may be controlled by hardware,
software or a combination of the two. The flags may be set with the CSW instruction or the WD.CSW
instruction. The WD.CSW instruction updates the WAIT-EVENT flags, writes a descriptor to the system bus,
and performs a context switch.

When WAIT-EVENT bits are set with a WD.CSW instruction, the processor initiates an uncachable write to
the system bus, and performs a context switch. All context switches are performed after a one-instruction
delay slot. The WAIT-EVENT bits may be cleared via software from another context with the POSTCX
instruction, or by hardware through the event signal inputs.

When the target device completes the WD operation, it notifies the processor with a high pulse on the
processor’s corresponding event signal input (eight per context). The processor then clears the WAIT-
EVENT bit in the context’s CXSTATUS register. Software can set more than one WAIT-EVENT bit, which
will require a completion response on each of the corresponding event signal inputs before the context is
ready for execution.

The CXSTATUS WAIT-LOAD bit indicates that the associated context is waiting for the completion of a
register load from uncached memory (or a memory-mapped I/O) following execution of LW.CSW (load
word with context switch), LT.CSW (load twinword with context switch) or LQ.CSW (load quadword with
context switch). See Section 2.5.4 for descriptions of these three instructions. WAIT-LOAD is set following
execution of LW.CSW, LT.CSW, LQ.CSW, WDLW.CSW, WDLT.CSW or WDLQ.CSW instructions, and
cleared by the processor when the load data is transferred to the context’s general register file.

The three-bit THREAD-PRIORITY field in CXSTATUS allows context scheduling with up to eight
priorities. An application specific context scheduler can utilize thread priorities to fine tune the context
scheduling. See Section 2.5.4 for details of the context scheduling hardware interface.

15

0000Wait-Event Thread-Prio

8 7 4 2 0

8 4 3

Wait-Ld

1

3

Revision 1.4 Lexra Proprietary & Confidential 13

LX8380 Section 2. Architecture

Table 4: Context Status Register Detail

2.5.2. Reset

At reset,

The general registers are unaffected by reset.

Context 0 is activated at reset. All CXPC’s are reset to the common MIPS reset vector 0xbfc0000, However,
context 0 may modify the initial CXPC of the other contexts prior to the first context switch.

2.5.3. Determining the Number of Contexts in Software

As described above, the number of contexts that are implemented in a processor is customer defined using
Lexra’s lconfigutility. In some cases software will be written that must be adaptable to an unknown number
of contexts. For any non-implemented context, reading the CXSTATUS register will always return a value of
zero. Using the instructions described in Section 2.5.12, Program Access to New Registers, the software can
attempt to write a non-zero value to the CXSTATUS register for each context. If the value zero is returned
when attempting to read back the written value, then that context is not implemented.

2.5.4. Initiation of Context Switch

A context switch is executed by the CSW instruction and any of the following instructions that include the
.CSW extension:

Field
Width
(Bits)

Description

WAIT-EVENT 8 (Rd/Wr) Set with CSW and WD.CSW
instructions. Cleared by external hardware,
or cleared with POSTCX instruction).

Reserved 4 (Rd Only) Reserved.

WAIT-LOAD 1 (Rd/Wr) Set with LW.CSW, LT.CSW,
LQ.CSW, WDLW.CSW, WDLT.CSW and
WDLQ.CSW instructions. Cleared by hard-
ware.

THREAD-PRIORITY 3 (Rd/Wr) Thread (context) priority, for use by
optional custom context scheduler.

CXSTATUS[15:0] <— 0x0000
CXPC[31:0] <— 0xbfc00000
MOVECX[2:0] <— 000

CSW rs context switch, update CXSTATUS from rs
LW.CSW rt, displacement(base) load word from uncached memory
LT.CSW rt, displacement(base) load twinword from uncached memory
LQ.CSW rt, displacement(base) load quadword from uncached memory
WD rs, rt, device write descriptor to device
WD.CSW rs, rt, device write descriptor to device, with context switch
WDLW.CSW rd, rs, rt, device write descriptor, load word reply data
WDLT.CSW rd, rs, rt, device write descriptor, load twin reply data
WDLQ.CSW rd, rs, rt, device write descriptor, load quad reply data

14 Lexra Proprietary & Confidential Revision 1.4

Section 2. Architecture LX8380

2.5.5. CSW Instruction

The Context Switch (CSW) instruction causes an unconditional context switch, allowing the application
program to execute a context switch under complex, program-defined conditions by alternately executing or
branching around the CSW instruction. Bits 31:24 of the rs register specified in the CSW instruction are
logically OR-ed with the WAIT-EVENT field of CXSTATUS to determine the new WAIT-EVENT field
settings.

2.5.6. LW.CSW, LT.CSW and LQ.CSW Instructions

The Load Word with Context Switch (LW.CSW) instruction is used to initiate a long latency transfer from an
LBus device to a general register. LW.CSW performs a “split transaction” read so that the next context can
continue to execute while the memory-mapped resource is accessed. Only two clock cycles of system bus
tenure are required to initiate the split read transaction. Following initiation, the bus is available for other use.
The final transfer of the return data uses one cycle of system bus tenure. Loading the final result into the
register file will not stall the currently executing context unless the context is executing a load or store
instruction at the time the split read data is returned. In this case, a single cycle stall is required to load the
split read data into the register file. The currently executing context is otherwise unaffected by the return data.

Similarly, LT.CSW is used to initiate a long latency load of 64-bit data into two consecutively numbered
general registers, starting with the low register address bit equal to 0. Up to two processor stalls can occur
when the 64-bit data is transferred into the register file. LQ.CSW is used to initiate a long latency load of 128-
bit data into four consecutively numbered general registers, starting with the two low order register address
bits equal to 00. Up to four processor stalls can occur when the 128-bit data is transferred into the register file.

Following LW.CSW, LT.CSW or LQ.CSW, WAIT-LOAD in CXSTATUS is set.

2.5.7. WD[.CSW] Instructions

The Write Descriptor (WD) instruction forms a 64-bit descriptor from the contents of two general registers,
and writes the descriptor over the system bus interface to the specified device. An optional context switch
may be performed by this instruction, by appending a .CSW suffix to the mnemonic. These instructions are
used to initiate long-latency operations to a shared device.

These instructions form the descriptor using rs and rt register contents, as described in detail in Section 4. For
WD.CSW, the upper bits of the descriptor identify the WAIT-EVENT bits to be set. The WD instruction
sources the full 64 bits of the descriptor on the system bus. The 32-bit system bus address of the target device
is formed by concatenating a 24-bit configuration defined constant, the 5-bit device ID from the instruction
opcode and three bits of 0.

2.5.8. WDLW.CSW, WDLT.CSW and WDLQ.CSW Instructions

The WDLW.CSW, WDLT.CSW and WDLQ.CSW instructions provide efficient operation with devices that
return 32, 64 or 128 bits of data. These instructions set the WAIT-LOAD bit in the CXSTATUS register. The
WDLW.CSW writes a 64-bit descriptor to a device, and requests the device to provide a split transaction
word read response. Likewise, the WDLT.CSW (WDLQ.CSW) instruction writes a descriptor and requests
the device to provide a split transaction twinword (quadword) read response. Note that a .CSW suffix is
mandatory for these instructions, because they must always set WAIT-LOAD. These instructions do not set
WAIT-EVENT bits in the CXSTATUS register.

2.5.9. Pipeline

Following execution of a context switch instruction (LW.CSW, LT.CSW, LQ.CSW, WD.CSW, WDLW.CSW,
WDLT.CSW, WDLQ.CSW or CSW), the next instruction executes to completion in the current context,

Revision 1.4 Lexra Proprietary & Confidential 15

LX8380 Section 2. Architecture

before the context switch is effective. In other words, the context switch — as a result of pipelining — has an
architectural “delay slot” exposed to the programmer. This delay slot, and restriction on its usage, is
explained below and is generally consistent with similar branch and jump delay slots in the MIPS I ISA.

The delay slot is illustrated below:

In the example, context(i)’s inst n+1 executes to completion. CXPCi stores the address of inst n+2; the
address where context(i) resumes when it is later re-activated. After inst n+1 is complete, the next instruction
executed is inst m+1 in context(j). Of course, context(i) and context(j) may execute two completely different
tasks; or execute the same task on different data (in this case the PC’s will also be unrelated).

A number of restrictions apply to the delay slot instruction:

1. No branch or jump may be coded in the delay slot. A context switch changes program flow,
like the branch or jump. This restriction is thus similar to the MIPS I restriction that no back-
to-back branches or jumps can occur.

2. The register(s) loaded by LW.CSW, LT.CSW, LQ.CSW, WDLW.CSW, WDLT.CSW or
WDLQ.CSW cannot be referenced in the delay slot following the load. A similar restriction
exists for loads in the MIPS I ISA.

2.5.10. New Context Selection

Following execution of a context switching instruction, the CPU selects the next context for activation from
the available pool. The available pool consists of those contexts for which the CXSTATUS register’s WAIT-
EVENT and WAIT-LOAD fields are clear.

If no context is available, the CPU stalls after executing the context switching instruction and its delay slot.
Stall conditions can arise when all contexts initiate long latency processes. For example all contexts might
initiate a block transfer within a short period of time such that no transfer has completed when the last context
performs its context switch.

The CPU logic required to implement the above next context selection algorithm is pipelined. As a result, the
next context selection, in the D-Stage of the pipeline (a critical path), can be very simple. With this approach,
the CXSTATUS register sampling used for next context selection will occur several cycles earlier and may
not include a newly available context. However, this is not a drawback because event completions for inactive
contexts are asynchronous to the current context’s program. The LX8380’s internal context scheduler
(described in the following paragraphs) is pipelined such that if there is currently no active context (all
contexts have some wait bit set), it takes two cycles from the time that some context has all of its Wait bits
clear, until that context’s CXPC value is driven to the instruction RAM.

The LX8380 processor includes internal context scheduling hardware. The scheduler examines the
CXSTATUS register of each context to determine which contexts are ready for execution. A context for
which all of the WAIT-EVENT and WAIT-LOAD bits are zero may be selected on the next context switch
operation. The LX8380’s internal context scheduler ignores the THREAD-PRIORITY field of the
CXSTATUS register. It selects the next context “fairly”. A characteristic of this scheduler is that, if contexts
are performing similar types of activities over time, they experience similar selection rates and similar delays
in selection when there are multiple contexts ready for execution.

context(i) context(j)
inst n CSW r7 inst m ...
inst n+1 addu r3, r2, r1 —> inst m+1 addu r7, r6, r3
inst n+2 subu r4, r3, r1 inst m+2 ...

16 Lexra Proprietary & Confidential Revision 1.4

Section 2. Architecture LX8380

The algorithm employed by the internal scheduler relies on a “window” of ready contexts. The following
steps in the algorithm are endlessly repeated:

• Once a window of ready contexts has been chosen, no other contexts are added to this
window.

• If a ready context in the window subsequently has one of its Wait bits turned on, that
context is removed from the window. Since the window contains only inactive contexts,
this can only happen if the currently active context executes a MTCXC to turn on another
context’s Wait bit. This is an unusual case because it is expected that MTCXC will only be
used during system initialization.

• One-by-one, as context switches are executed, a context from the window is selected for
the next context switch. As each context-switch takes effect, the selected context is
removed from the window. The selection among the contexts in the window is not
architecturally defined and application software should not depend on any particular order.
The current implementation selects the highest numbered context in the window, but this
may be changed in future implementations.

• When the window is (about to) become empty, a new window is created comprising all of
the currently ready contexts. (If there are none, this step repeats until there is at least one
ready context.) When a new non-empty window is obtained, the full cycle of this
algorithm continues as described above.

Any context that becomes ready will eventually be included in the next new window, and will be selected for
execution. Therefore, this algorithm prevents a ready context from being starved out of activation by other
contexts. The fairness of this algorithm results from the fact that contexts which become ready more often are
dispatched more often while those which become ready less often are dispatched less often.

For applications that require more detailed scheduling, the customer may bypass the standard LX8380
scheduler and supply an application specific design that has access to the same per context information as the
standard scheduler. Such a scheduler may also examine other real time information that is outside the
province of LX8380 architecture.

The following table lists the ports that the processor supplies for each context, which are directly connected to
the standard or application specific scheduler module (the port direction is relative to the processor). An input
to the processor must be driven from a register in the scheduler. Likewise, an output from the processor is
driven from a register within the processor.

Table 5: Scheduler Ports

Processor Port Direction Description

CX_STUSTHWAIT_R[<n>-1:0] output asserted when any wait flag is set in CXSTA-
TUS, where <n> is the number of contexts

CX_STUSTHPRIO_R[<n*3>-1:0] output THREAD-PRIORITY field from CXSTATUS,
where <n> is the number of contexts

CX_THREADACTV_R[<n>-1:0] output 1 if thread (context) is active, where <n> is
the number of contexts

EXT_NEXTCNTXRDY_P_R input 1 if scheduler’s next context selection is valid

EXT_NEXTCNTX_P_R[2:0] input scheduler’s next context selection

Revision 1.4 Lexra Proprietary & Confidential 17

LX8380 Section 2. Architecture

Because the scheduler determines the context that the processor will activate on thenextcontext switch, it can
include register stages in its design to avoid any timing problems. Typically, each processor is connected to its
own local context scheduler. However, the use of a single scheduling module, which operates on information
from all processors, is not precluded.

It should be noted that the CX_THREADACTV_R signals indicate the current active context at theendof the
pipeline. Exceptions and mispredicted branches can cause context-switches to be squashed. Furthermore, the
WAIT bit values can be set by context switches or MTCXC instructions, and these changes only take effect at
the end of the pipeline (after any potential exceptions or branches have been resolved). On the other hand, the
EXT_NEXTCNTX_P_R inputs must be used at thebeginningof the pipeline to select a new active context in
case of a potential context switch.

To resolve the discrepancy between the end and beginning of the pipeline, CP0 inhibits a context that is active
at any stage of the pipeline from being dispatched for a context switch, regardless of the value of
EXT_NEXTCNTX_P_R. In addition, all contexts are inhibited from being dispatched for a context switch
while there is an MTCXC instruction at any stage of the pipeline. This will, on rare occasions, cause no valid
instructions to be sent down the pipeline, but it eliminates the need for the external scheduler to be aware of
the pipeline.

This inhibiting logic also implies that the external scheduler only needs to detect a change in the value of any
CX_THREADACTV_R (from zero to one) to determine that a context switch has actually taken place and a
new context has been dispatched.

2.5.11. Example Context Switch for Coprocessor Operation

The following example illustrates how an unconditional context switch could be used to allow other contexts
to execute while a coprocessor performs a relatively long latency operation on behalf of a context. The
example assumes that Coprocessor 2 has been connected to the processor’s Coprocessor Interface (CI),
which is available as part of Lexra’s standard product.

The Coprocessor is assumed to contain a control register ($1) that must contain the context number to which
subsequent Coprocessor instructions apply. Another control register ($2) is used to start the Coprocessor
operation. When the Coprocessor concludes the operation it signals the processor to clear a specific WAIT-
EVENT bit (for the target context) associated with the Coprocessor. This makes the context ready for
dispatch. Since several contexts can use Coprocessor 2, before retrieving the results the current context must
again be stored to the control register ($1). In addition to the MYCX and CSW instructions, the example uses
the MIPS standard MTC2, CTC2, MFC2 instructions for accessing Coprocessor 2.

mycx r1 # get current context number
ctc2 r1, $1 # tell cop2 which context this is
mtc2 ... # supply other data to cop2
...
csw r2 # switch, and wait for cop2
ctc2 r3, $2 # kick off cop2 in delay slot

after the context switch,
when the cop2 operation completes
this context is made ready and
eventually gets dispatched here

ctc2 r1, $1 # tell cop2 which context this is
mfc2 ... # retrieve results

18 Lexra Proprietary & Confidential Revision 1.4

Section 2. Architecture LX8380

2.5.12. Program Access to New Registers

The new registers described in Section 2.5.1. CXPC, CXSTATUS, MOVECX, as well as the general registers
of all contexts, are accessible under program control by the active context.

The MOVECX register, which determines the target context for the MTCXC, MFCXC, MTCXG, MFCXG
instructions, is loaded by the MTLXC0 instruction and can be read with the MFLXC0 instruction.

The number of the currently executing context can be accessed with the MYCX instruction, which loads it
into a general register.

CXPC and CXSTATUS are new Coprocessor 0 registers. These context control registers (ct or cd) can be
moved to or from general registers (rt or rd) of the active context using the following instructions:

where,

ct or cd = {CXSTATUS, CXPC}

MOVECX[2:0] designates the context whose ct or cd is to be accessed.

MTCXC and MFCXC shouldnotbe used to access the CXPC of the currently active context. If ct or cd is the
CXPC of the currently active context, the result of MTCXC or MFCXC is undefined.

Two additional instructions permit the general registers (rt or rd) in the active context to be transferred to or
from the general registers (gt or gd) in inactive contexts:

This capability is useful in debugging, so that all registers are accessible without execution of a context
switch. (The special case of moves within a single context using MTCXG, MFCXG is undetectable by the
assembler, though it would normally be performed using a MIPS I instruction.)

Accessing a general register in an inactive context will give unpredictable results if a load is pending to that
register.

MTCXC, MFCXC, MTCXG and MFCXG are extensions to the MIPS ISA. They function similarly to the
MIPS MTC0 and MFC0 instructions, but the opcodes have different object code assignments to allow the
number of Coprocessor 0 registers to be extended. As with MTC0 and MFC0, a Coprocessor Usability Trap
is taken in User Mode if CP0 is not designated usable in STATUS (MTCXC, MFCXC, MTCXG, MFCXG
are always usable in Kernel Mode.)

2.5.13. Exceptions

The MIPS R3000 exception processing model is unchanged by LX8380, with one difference explained in the
next paragraph. Following a program synchronous trap or an interrupt, the PC of the current context is stored
in the program-visible EPC register. Exceptions are “precise”, allowing an exception handler to possibly take
recovery steps and then resume execution at the PC of the exception. If there is an active context,nocontext
switch occurs when an exception (trap or interrupt) is taken. The exception handler executes in the same
context that was current at the time the exception was taken. The handler can use the MYCX instruction to

MTCXC rt, cd moves gen reg rt (of the active context) to cd

MFCXC rd, ct moves ct to gen reg rd (of the active context)

MTCXG rt, gd moves rt (of the active context) to gd of context MOVECX

MFCXG rd, gt moves gt of context MOVECX to rd (of the active context)

Revision 1.4 Lexra Proprietary & Confidential 19

LX8380 Section 2. Architecture

determine its context, if necessary.

LX8380 suppresses exceptions that occur in the delay slot of a context switch. This simplified approach is
acceptable in embedded systems. Exception reporting is a useful debug tool during the development process,
but is not necessary in production systems. This suppression of exceptions applies to both interrupts and all
program synchronous traps. Therefore, instructions which deliberately cause exceptions (BREAK,
SYSCALL) should never be coded in the delay slot of a CSW-type instruction. An EJTAG debugger should
never attempt to insert an SDBBP in the delay slot, and should also note that single-stepping will execute past
the delay slot instruction.

To facilitate system level error detection and reporting, the processor has a special response to the assertion of
its IntreqN[7] hardware interrupt input. When this interrupt is asserted, the processor forces context 0 into a
ready state by clearing all of the wait flags in context 0’s CXSTATUS register. This ensures that there is a
context available to service the interrupt. However, the interrupt may be serviced by any other ready context.

All contexts share a common set of Coprocessor 0 registers including the exception processing registers
described in Section 2.4, System Control Coprocessor (CP0).

20 Lexra Proprietary & Confidential Revision 1.4

Section 2. Architecture LX8380

Revision 1.4 Lexra Proprietary & Confidential 21

LX8380 Section 3. RISC Programming Model

3. RISC Programming Model

This section describes the LX8380 programming model. Section 3.1 summarizes the basic RISC operations
supported by the LX8380. These opcodes may be extended by the customer using Lexra’s Custom Engine
Interface (CEI). This capability is described in Section 3.2.

Section 3.3 describes the Simple Memory Management Unit (SMMU). The SMMU provides sufficient
memory management capabilities for most embedded applications while supporting execution of third-party
MIPS software development tools. (Section 5 describes the optional programmable MMU.)

The LX8380 supports the MIPS R3000 exception processing model, as described in Section 3.4.

The LX8380 supports MIPS I coprocessor operations. The customer can include one or two application-
specific coprocessors. The LX8380 includes an optional Coprocessor Interface (CI) that provides a simplified
connection between a coprocessor and the internal signals of the LX8380. The CI is described in Section 3.6.

3.1. Summary of Basic RISC Instructions

The LX8380 executes the MIPS I (R2000/R3000) instructions as detailed in the tables below. The LX8380
executes full MIPS I instruction set, excluding the unaligned load and store instructions (LWL, SWL, LWR,
SWR) which are executed as no-ops.

The MTLXC0, MFLXC0, MOVZ, MOVN and LTW instructions shown in this section are not MIPS I
instructions.

Additional instructions supported by the LX8380 are described in Section 4, Instruction Extensions;
Section 4.2, MAC Instructions; Section 6.3, CACHE Instruction.

The following conventions are employed in the instruction descriptions.

« » Encloses a list of syntax choices, from which one must be chosen.

{ } Encloses a list of values that are concatented to form a larger value.

n { value } Replicates (concatenates) value n times.

value[3] Bits selected from value.

[rS + offset] Memory address computation and corresponding memory contents.

4’b0000 A sized constant binary value.

32’h1234_5678 A sized constant hexadecimal value.

expr ? A : B Select A if expr is true, otherwise select B.

cntx::reg A multi-context reg from context cntx. Current context if no cntx:: prefix.

22 Lexra Proprietary & Confidential Revision 1.4

Section 3. RISC Programming Model LX8380

3.1.1. ALU Instructions

Table 6: ALU Instructions

Instruction Name and Description

ADD
ADDU
ADDI
ADDIU

rD, rS, rT
rD, rS, rT
rD, rS, immediate
rD, rS, immediate

Add
Add Unsigned
Add Immediate
Add Immediate Unsigned

rD ← rS + «rT, immediate»

Add reg rS to either reg rT or a 16-bit immediate sign-
extended to 32 bits. Result is stored in reg rD. ADD and
ADDI can generate overflow trap; ADDU and ADDIU do
not.

SUB
SUBU

rD, rS, rT
rD, rS, rT

Subtract
Subtract Unsigned

rD ← rS - rT

Subtract reg rT from reg rS. Result is stored in register rD.
SUB can generate overflow trap. SUBU does not.

AND
ANDI

rD, rS, rT
rD, rS, immediate

And
And Immediate

rD ← rS & «rT, immediate»

Logical and of reg rS with either reg rT or a 16-bit immedi-
ate zero-extended to 32 bits. Result is stored in reg rD.

OR
ORI

rD, rS, rT
rD, rS, immediate

Or
Or Immediate

rD ← rS | «rT, immediate»

Logical or of reg rS with either reg rT or a 16-bit immediate
zero-extended to 32 bits. Result is stored in reg rD.

XOR
XORI

rD, rS, rT
rD, rS, immediate

Exclusive Or
Exclusive Or Immediate

D ← rS ^ «rT, immediate»

Logical xor of reg rS with either reg rT or a 16-bit immediate
zero-extended to 32 bits. Result is stored in reg rD.

NOR rD, rS, rT Nor

rD ← ~(rS | rT)

Logical nor of reg rS with reg rT. Result is stored in reg rD.

Revision 1.4 Lexra Proprietary & Confidential 23

LX8380 Section 3. RISC Programming Model

LUI rD, immediate Load Upper Immediate

rD ← {immediate, 16’b0}

The 16-bit immediate is stored into the upper half of reg rD.
The lower half is loaded with zeroes.

SLL
SLLV

rD, rT, immediate
rD, rT, rS

Shift Left Logical
Shift Left Logical Variable

rD ← rT << «rS, immediate»

The 5-bit shift amount amt is obtained from the immediate
field (SLL) or bits 4:0 of reg rS (SLLV). The contents of reg
rT are shifted left amt bits. The result is stored in reg rD.

SRL
SRLV

rD, rT, immediate
rD, rT, rS

Shift Right Logical
Shift Right Logical (Variable)

rD ← rT >> «rS, immediate»

The 5-bit shift amount amt is obtained from the immediate
field (SRL) or bits 4:0 of reg rS (SRLV). The contents of reg
rT are shifted right amt bits. The result is stored in reg rD.

SRA
SRAV

rD, rT, immediate
rD, rT, rS

Shift Right Arithmetic
Shift Right Arithmetic Variable

rD ← rT >>(a) «rS, immediate»

The 5-bit shift amount amt is obtained from the immediate
field (SRA) or bits 4:0 of reg rS (SRAV). The contents of reg
rT are arithmetic shifted right amt bits. The result is stored
in reg rD.

SLT
SLTU
SLTI
SLTIU

rD, rS, rT
rD, rS, rT
rD, rS, immediate
rD, rS, immediate

Set on Less Than
Set on Less Than Unsigned
Set on Less Than Immediate
Set on Less Than Immediate Unsigned

rD ← (rS < «rT, immediate») ? 1 : 0

If reg rS is less than «rT, immediate» set rD to 1, else 0.
The 16-bit immediate is sign extended. For SLT, SLTI, the
comparison is signed; for SLU, SLTIU, the comparison is
unsigned.

Instruction Name and Description

24 Lexra Proprietary & Confidential Revision 1.4

Section 3. RISC Programming Model LX8380

3.1.2. Load and Store Instructions

Table 7: Load and Store Instructions

Instruction Description

LB rT, offset(rS)
LBU rT, offset(rS)
LH rT, offset(rS)
LHU rT, offset(rS)
LW rT, offset(rS)

Load Byte
Load Byte Unsigned
Load Halfword
Load Halfword Unsigned
Load Word

rT ← Memory[rS + offset]

Reg rT is loaded from data memory. The memory address is
computed as base + offset, where the base is reg rS and the
offset is the 16-bit offset sign-extended to 32 bits.
LB, LBU addresses are interpreted as byte addresses to data
memory; LH, LHU as halfword (16-bit) addresses; LW as word
(32-bit) addresses.
The data fetched in LB, LH (LBU, LHU) is sign-extended (zero-
extended) to 32-bits for storage to reg rT.
rT cannot be referenced in the instruction following a load
instruction.

LTW rT, offset(rS) Load TwinWord

{ rT, rT+1 } ← Memory[rS + offset]

The offset, in bytes, is a signed rT 13-bit quantity that must
be divisible by 8 (since it occupies only 10 bits of the
instruction word). The offset is sign extended and added to
the contents of the register rT to form the address temp.
The word addressed by temp is fetched and loaded into rT
(which must be an even register). The word addressed by
temp+4 is loaded into rT+1.
If temp is not twinword aligned, an address exception is
taken.
If the instruction immediately following LTW attempts to use
rT or rT+1, the results of that instruction are unpredictable.

SB rT, offset(rS)
SH rT, offset(rS)
SW rT, offset(rS)

Store Byte
Store Halfword
Store Word

Memory[rS + offset] ← rT

Reg rT is stored to data memory. The memory address is
computed as base + offset, where the base is reg rS and the
offset is the 16-bit offset sign-extended to 32 bits.
SB addresses are interpreted as byte addresses to data mem-
ory; the 8 low-order bits of rT are stored. SH addresses are
interpreted as halfword addresses to data memory; the 16 low
order bits of rT are stored.

Revision 1.4 Lexra Proprietary & Confidential 25

LX8380 Section 3. RISC Programming Model

3.1.3. Conditional Move Instructions

Table 8: Conditional Move Instructions

Instruction Description

MOVZ rD, rS, rT Move if Zero

rD ← (rT== 0) ? rS : rD

If the contents of general register rT are equal to 0, the general
register rD is updated with rS; otherwise rD is unchanged.

MOVN rD, rS, rT Move if Not Zero

rD ← (rT != 0) ? rS : rD

If the contents of general register rT are not equal to 0, the gen-
eral register rD is updated with rS; otherwise rD is unchanged.

26 Lexra Proprietary & Confidential Revision 1.4

Section 3. RISC Programming Model LX8380

3.1.4. Branch and Jump Instructions

Table 9: Branch and Jump Instructions

Instruction Description

BEQ rS, rT, offset
BNE rS, rT, offset

Branch if Equal
Branch if Not Equal

if COND
 pc ← pc + 4 + { 14 { offset[15] }, offset, 2’b00 }
else
 pc ← pc + 8
where COND = (rS = rT) for EQ, (rS ne rT) for NE,
and offset is a 16-bit value.

For BEQ, BNE the instruction after the branch (delay slot) is
always executed.

BLEZ rS, offset
BGTZ rS, offset

Branch if Less Than or Equal to Zero
Branch if Greater Than Zero

if COND
 pc ← pc + 4 + { 14 { offset[15] }, offset, 2’b00 }
else
 pc ← pc + 8
where COND = (rS <= 0) for LE, (rS > 0) for GT,
and offset is a 16-bit value

For BLEZ, BGTZ the instruction after the branch (delay slot) is
always executed.

BLTZ rS, offset
BGEZ rS, offset

Branch if Less Than Zero
Branch if Greater Than or Equal to Zero

if COND
 pc ← pc + 4 + { 14 { offset[15] }, offset, 2’b00 }
else
 pc ← pc + 8
where COND = (rS < 0) for LT, (rS >= 0) for GE,
and offset is a 16-bit value

For BLTZ, BGEZ the instruction after the branch (delay slot) is
always executed.

BLTZAL rS, offset
BGEZAL rS, offset

Branch if Less Than Zero And Link
Branch if Greater Than or Equal to Zero And Link

Similar to the BLTZ and BGEZ except that the address of the
instruction following the delay slot is saved in r31 (regardless
of whether the branch is taken.)

Revision 1.4 Lexra Proprietary & Confidential 27

LX8380 Section 3. RISC Programming Model

3.1.5. Control Instructions

Table 10: Control Instructions

J target Jump

pc ← { pc[31:28], target, 2’b00 }

The jump target is a 26-bit absolute value. The instruction fol-
lowing J (delay slot) is always executed.

JAL target Jump And Link

Same as Jump (J), except that the address of the instruction
following the delay slot is saved in r31.

JR rS Jump Register

pc ← (rS)

Jump to the address specified in rS. The instruction following
JR (delay slot) is always executed.

JALR rS, rD Jump And Link Register

Same as Jump Register (JR), except that the address of the
instruction following the delay slot is saved in rD.

Instruction Description

SYSCALL System Call

The Sys Trap occurs when SYSCALL is executed.

BREAK Break

The Bp Trap occurs when BREAK is executed.

RFE Restore From Exception

Causes the KU/IE stack to be popped. Used when returning
from the exception handler. See “Exception Processing”
below.

Instruction Description

28 Lexra Proprietary & Confidential Revision 1.4

Section 3. RISC Programming Model LX8380

3.1.6. Coprocessor Instructions

Table 11: Coprocessor Instructions

Instruction Description

LWCz rCGEN, offset(rS) Load Word to Coprocessor Z

rCGEN ← Memory[rS + offset]

Coprocessor z [1-3] general reg rCGEN is loaded from data
memory. The memory address is computed as base + offset,
where the base is reg rS and the offset is the 16-bit offset
sign-extended to 32 bits.
rCGEN cannot be referenced in the following instruction (one
cycle delay).

SWCz rCGEN, offset(rS) Store Word from Coprocessor Z

Memory[rS + offset] ← rCGEN

Coprocessor z [1-3] general reg rCGEN is stored to data
memory. The memory address is computed as base + offset,
where the base is reg rS and the offset is the16-bit offset sign-
extended to 32 bits.

MTCz rT, rCGEN
CTCz rT, rCCON

Move To Coprocessor Z
Move Control To Coprocessor Z

In MTCz(CTCz), the general register rT is moved to copro-
cessor z [0-3] general (control) reg rCGEN(rCCON).
rCGEN and rCCON cannot be referenced in the following
instruction.

MFCz rT, rCGEN
CFCz rT, rCCON

Move From Coprocessor Z
Move Control From Coprocessor Z

In MFCz (CFCz), the coprocessor z [0-3] general (control) reg
rCGEN (rCCON) is moved to the general register rT.
rT cannot be referenced in the following instruction.

Revision 1.4 Lexra Proprietary & Confidential 29

LX8380 Section 3. RISC Programming Model

MTLXC0 rT, LX0reg Move To Lexra Coprocessor 0 Register

The contents of general register rT are moved to the Lexra-
defined CP0 register indicated by LX0reg.

MFLXC0 rT, LX0reg Move From Lexra Coprocessor 0 Register

The general register rT is loaded from the contents of the
Lexra-defined CP0 register indicated by LX0reg. rT cannot be
referenced in the following instruction.

BCzT offset
BCzF offset

Branch if Coprocessor Z is True
Branch if Coprocessor Z is False

if COND
 pc ← pc + 4 + { 14’ { offset[15] } , offset, 2’b00 }
else
 pc ← pc + 8
where COND = (CpCondz = True) for BCzT,
(CpCondz = False) for BCzF.

For BCzT, BCzF the instruction after the branch (delay slot) is
always executed.

Instruction Description

30 Lexra Proprietary & Confidential Revision 1.4

Section 3. RISC Programming Model LX8380

3.2. Opcode Extension Using the Custom Engine Interface (CEI)

Customers may add proprietary or application-specific opcodes to their LX8380 based products using the
Custom Engine Interface (CEI). The new instructions take one of the following forms illustrated below and
use reserved opcodes.

Table 12: Custom Engine Interface Operations

Lexra permits customer operations to be added using the four (4) I-Format opcodes and six (6) R-Format
opcodes listed in the table above. Other opcode extensions in future Lexra products willnot utilize the
opcodes reserved above.

When the Custom Engine decodes NEWOPI or NEWOPR, it must signal the core that a custom operation
has been executed so that the Reserved Instruction (RI) trap will not be taken. Multi-cycle custom operations
may be executed by asserting the LX8380’s CEI halt input.

Note: The custom operation may choose to ignore the SRC1 and SRC2 operands supplied by the CEI and
reference internal Custom Engine registers instead. Results can also be written to an implicit custom register.
However, unless rD = 0 is coded a register in the processor will also be written.

See the table entries under Custom Engine Interface on page 139 for a listing of the CEI signals.

New Instruction Description Available Opcodes

NEWOPI rD, rS, immed New Operation Immediate

rD ← rS NEWOPI immed

Reg rS is supplied to the SRC1 port of
CEI and the 16-bit immediate, sign-
extended to 32-bits is supplied to
SRC2.
The result of the customer’s NEWOPI
is placed on the CEI input port RES
and stored in reg rD.

INST[31:26] = 24 - 27

NEWOP rD, rS, rT New Operation

rD ← rS NEWOPR rT

Reg rS is supplied to the SRC1 port of
CEI and reg rT is supplied to SRC2.
The result of the customer’s NEWOPI
is placed on the CEI input port RES
and stored in reg rD.

INST[31:26] = 0 and
INST[5:0] =
 56,58-60,62-63

Revision 1.4 Lexra Proprietary & Confidential 31

LX8380 Section 3. RISC Programming Model

3.3. Simple Memory Management Unit

The LX8380 includes a Simple Memory Management Unit (SMMU) for the instruction memory address and
the data memory address. The hardwired virtual-to-physical address translation performed by the SMMU is
sufficient to ensure execution of third-party software development tools.

Table 13: SMMU Address Translation

The LX8380 includes optional support for a fully programmable MIPS R3000-style MMU. This is described
in Section 5, Memory Management Unit (MMU).

Region Name Virtual Address Physical Address Cacheability Permission

kuseg 0x0000_0000-
0x7FFF_FFFF

0x4000_0000-
0xBFFF_FFFF

cached kernel or user

kseg0 0x8000_0000-
0x9FFF_FFFF

0x0000_0000-
0x1FFF_FFFF

cached kernel

kseg1 0xA000_0000-
0xBFFF_FFFF

0x0000_0000-
0x1FFF_FFFF

uncached kernel

kseg2 0xC000_0000-
0xFEFF_FFFF

0xC000_0000-
0xFEFF_FFFF

cached kernel

upper-kseg2 0xFF00_0000-
0xFFFF_FFFF

0xFF00_0000-
0xFFFF_FFFF

uncached kernel

32 Lexra Proprietary & Confidential Revision 1.4

Section 3. RISC Programming Model LX8380

3.4. Exception Processing

The LX8380 implements the MIPS R3000 exception processing model. TLB related exceptions are included
only if the LX8380 is configured with the optional MMU. The termexceptionrefers totraps, which are non-
maskable program synchronous events, andinterrupts,which result from unmasked asynchronous events.

The list below is numbered from highest to lowest priority. ExcCode is stored in CAUSE when an exception
is taken. Sys, Bp, RI, CpU can share the same priority level because only one can occur in a given time slot.

Table 14: List of Exceptions

Exception Priority ExcCode Description

Reset 1 -- Reset trap.

AdEL –
instruction

2 4 Address exception trap. Instruction fetch. Occurs if the
instruction address is not word-aligned or if a kernel
address is referenced in user mode.

TLBL -
instruction

3 2 TLB instruction fetch trap. Occurs when a virtual instruc-
tion address does not match a TLB entry.

Ov 4 12 Arithmetic overflow trap. Can occur as a result of signed
add or subtract operations.

Sys 5 8 SYSCALL instruction trap. Occurs when SYSCALL
instruction is executed.

Bp 5 9 BREAK instruction trap. Occurs when BREAK instruction
is executed.

RI 5 10 Reserved instruction trap. Occurs when a reserved
opcode is fetched.

CpU 5 11 Coprocessor Usability trap. Occurs when an attempt is
made to execute a coprocessor z operation and copro-
cessor z is not enabled (via the STATUS register).

AdEL –
data

6 4 Address exception trap. Data fetch. Occurs if the data
address is not properly aligned or if a kernel address is
generated in user mode.

AdES 7 5 Address exception trap. Data store. Occurs if the data
address is not properly aligned or if a kernel address is
generated in user mode.

TLBL -
data

8 2 TLB data load trap. Occurs when the virtual data address
of a load operation does not match a TLB entry.

TLBS 8 3 TLB data store trap. Occurs when the virtual data
address of a store operation does not match a TLB entry.

TLBMOD 8 1 TLB data modified trap. Occurs when the virtual data
address of a store operation matches a TLB entry that is
marked valid but not dirty.

Int 9 0 Unmasked interrupt from one or more of the six R3000
non-prioritized hardware interrupt requests, or the eight
Lexra-specific prioritized hardware interrupt requests.

Revision 1.4 Lexra Proprietary & Confidential 33

LX8380 Section 3. RISC Programming Model

3.4.1. Exception Processing Registers

These registers are read or written using MFC0 and MTC0 operations. The 0 fields are ignored on write and
are 0 on read. To ensure compatibility with future LX8380 versions, they should be written with 0.

STATUS: Coprocessor 0 General Register Address = 12

CAUSE: Coprocessor 0 General Register Address = 13

31-28 27-23 22 21-16 15-8 7-6 5 4 3 2 1 0

CU[3:0] 0 BEV 0 IM[7:0] 0 KUo IEo KUp IEp KUc IEc

Field Description R/W Reset

CU CU[z] = 1 (0) indicates that coprocessor z is usable (unusable) in
coprocessor instructions. In kernel mode, CP0 is always usable
regardless of the setting of CU[0].

R/W 0

BEV Bootstrap Exception Vector. Selects between two trap vectors.
(See Section 3.4.2.)

R/W 1

IM Interrupt masks for the six non-prioritized hardware interrupts and
two software interrupts.

R/W 0

KU/IE KU = 0 (1) indicates kernel (user) mode. In the LX8380, user mode
virtual addresses must have msb = 0. In kernel mode, the full
address space is addressable. IE = 1 (0) indicates that interrupts
are enabled (disabled).

The KUo, IEo, KUp, IEp, KUc and IEc fields form a three-level
stack hardware stack KU/IE signals. The current values are KUc/
IEc, the previous values are KUp/IEp, and the old values (those
before previous) are KUo/IEo. (See Section 3.4.2.)

R/w 0

31 30 29-28 27-16 15-8 7 6-2 1-0

BD 0 CE[1:0] 0 IP[7:0] 0 ExcCode[4:0] 0

Field Description R/W Reset

BD Branch Delay. Indicates that the exception was taken in a branch
or jump delay slot.

R 0

CE Coprocessor Exception. In the case of a Coprocessor Usability
exception, indicates the number of the responsible coprocessor.

R 0

IP[7:2] Interrupt Pending. Bits are set when the corresponding hardware
interrupt input INTREQ_N[7:2] request is pending. Level sensitive.

R 0a

a. After reset is de-asserted, IP contains values sampled from hardware interrupt sources.

IP[1:0] Interrupt Pending Software controllable interrupts. Level sensitive. R/W

ExcCode The ExcCode values (listed in Table 14) are stored here when an
exception occurs.

R 0

34 Lexra Proprietary & Confidential Revision 1.4

Section 3. RISC Programming Model LX8380

EPC: Coprocessor 0 General Register Address = 14

EPC contains the virtual address of the next instruction to be executed following return from the exception
handler. If the exception occurs in the delay slot of a branch, EPC holds the address of the branch instruction
and BD is set in Cause. The branch will typically be re-executed following the exception handler.

BADVADDR: Coprocessor 0 General Register Address = 8

3.4.2. Exception Processing: Entry and Exit

When an exception occurs, the instruction address changes to one of the following locations:

The KU/IE stack is pushed:

{ KUo, IEo, KUp, IEp, KUc, IEc } (before push)

{ KUp, IEp, KUc, IEc, 0, 0 } (after push)

which disables interrupts and puts the program in kernel mode. The code (ExcCode) for the exception source
is loaded into CAUSE so that the application-specific exception handler can determine the appropriate action.
The exception handler should not re-enable Interrupts until necessary information has been saved.

31 - 0

EPC

Field Description R/W Reset

EPC Exception Program Counter. R/W 0

31 - 0

BadVAddr

Field Description R/W Reset

BadVAddr Bad Virtual Address. Contains the virtual address (instruction or
data) which generated an AdEL or AdES exception error.

R 0

RESET 0xbfc0_0000

Other exceptions, BEV = 0 0x8000_0080

Other exceptions, BEV = 1 0xbfc0_0180

Revision 1.4 Lexra Proprietary & Confidential 35

LX8380 Section 3. RISC Programming Model

To return from the exception, the exception handler first moves EPC to a general register using MFC0,
followed by a JR operation. RFE onlypops the KU/IE stack:

{ KUp, IEp, KUc, IEc, 0, 0 } (before pop)

{ KUp, IEp, KUp, IEp, KUc, IEc } (after pop)

(This example assumes that KU/IE were not modified by the exception handler). Therefore, a typical
sequence of operations to return from the exception handler would be:

3.5. Low-Overhead Prioritized Interrupts

The LX8380 includes eight low-overhead hardware interrupt signals that extend the MIPS R3000 interrupt
exception model. These signals are compatible with the R3000 exception processing model and are useful for
real-time applications.

These interrupts are supported with three Lexra-defined CP0 registers, ESTATUS, ECAUSE, and INTVEC,
accessed with the MTLXC0 and MFLXC0 variants of the MTC0 and MFC0 instructions. The 0 fields in
these registers are ignored on write and are 0 on read. To ensure compatibility with future LX8380 versions,
they should be written with 0. As with any CP0 instruction, a Coprocessor Unusable Exception is taken if
these instructions are executed while in User Mode and the CU0 bit is 0 in the CP0 STATUS register.

The three Lexra CP0 registers are ESTATUS (0), ECAUSE (1), and INTVEC (2), and are defined as follows:

ESTATUS (LX CP0 Reg 0) Read/Write

ECAUSE (LX CP0 Reg 1) Read-only

MFC0 r26, C0_EPC // r26 is a temporary storage register in the RALU
. . .
JR r26
RFE

31 - 24 23 - 16 15 - 0

0 IM[15:8] 0

Field Description R/W Reset

IM Interrupt masks for the eight prioritized hardware interrupts. R/W 0

31 - 24 23 - 16 15 - 0

0 IP[15:8] 0

Field Description R/W Reset

IP Interrupt pending flags for the eight prioritized hardware interrupts. R 0a

a. After reset is de-asserted, IP contains values sampled from hardware interrupt sources.

36 Lexra Proprietary & Confidential Revision 1.4

Section 3. RISC Programming Model LX8380

INTVEC (LX CP0 Reg 2) Read/Write

ESTATUS contains the interrupt mask bits IM[15:8], which are reset to 0 so that none of the vectored
interrupts will be activated, regardless of the global interrupt enable flag, IEc, in the CP0 STATUS register.
(See Section 3.4.1, Exception Processing Registers.) The interrupt pending flags IP[15:8] for the vectored
interrupt signals are located in ECAUSE and are read-only. These fields are similar to the IM[7:0] and IP[7:0]
fields defined in the R3000 exception processing model, except that the vectored interrupts are prioritized in
hardware, and each has a dedicated exception vector.

IP[15] has the highest priority, while IP[8] has the lowest priority, however, all vectored interrupts are higher
priority than IP[7:0]. The processor concatenates the program defined BASE address for the exception
vectors with the interrupt number to form the interrupt vector, as shown in the table below. Two instructions
can be executed in each vector; typically these will consist of a jump instruction and its delay slot, with the
target of the jump being either a shared interrupt handler or one that is unique to that particular interrupt.

Table 15: Prioritized Interrupt Exception Vectors

When a vectored interrupt causes an exception, all of the standard actions for an exception occur. These
include updating the EPC register and certain sub-fields of the standard STATUS and CAUSE registers. In
particular, the Exception Code of the CAUSE register indicates “Interrupt”, and the “current” and “previous”
mode bits of the STATUS register are updated in the usual manner.

3.6. Coprocessors

Applications may include up to two coprocessors to interface with the LX8380 (not including the BMC,
which is implemented as Coprocessor 3). The contents of these coprocessors may include up to thirty-two
32-bitgeneral registersand up to thirty-two 32-bitcontrol registers. The general registers may be moved to
and from the RALU’s registers using MTCz, MFCz operations, or be loaded and stored from data memory
using LWCz, SWCz operations. The control registers may only be moved to and from the RALU’s registers
using CTCz, CFCz operations.

31 - 6 5 - 0

BASE 0

Field Description R/W Reset

BASE Base address of interrupt vector table (bits 31-6). R/W 0

Interrupt Number Exception Vector

15 { BASE, 6’b111000 }

14 { BASE, 6’b110000 }

13 { BASE, 6’b101000 }

12 { BASE, 6’b100000 }

11 { BASE, 6’b011000 }

10 { BASE, 6’b010000 }

9 { BASE, 6’b001000 }

8 { BASE, 6’b000000 }

Revision 1.4 Lexra Proprietary & Confidential 37

LX8380 Section 3. RISC Programming Model

The LX8380 includes the optional Coprocessor Interface (CI) allowing the customer to easily interface a
coprocessor to the LX8380. The CI supplies a set of control, address, and data busses that may be tied
directly to the coprocessor general and control registers.

The CI is described in more detail in Section 5, Coprocessor Interface.

38 Lexra Proprietary & Confidential Revision 1.4

Section 3. RISC Programming Model LX8380

Revision 1.4 Lexra Proprietary & Confidential 39

LX8380 Section 4. Instruction Extensions

4. Instruction Extensions

4.1. Context Switch and Data Transfer Operations

The table below explains the details of the instructions that are used to cause a context switch, and to transfer
data on behalf of a context. The context switching instructions typically set one or more WAIT bits in the
context’s CXSTATUS register which prevent the context from being reactivated until its program can
usefully resume.

Since a thread may wish to wait for notification of up to eight (hardware or software) events, there is a user-
mode instruction, POSTCX, which allows another thread to atomically clear any (within this processor)
context’s WAIT-EVENT bits.

The instruction MYCX allows the program to determine its own context number and, if there are multiple
processors in the system, its own processor number. This allows several threads to execute the same program,
but to use their context numbers (and/or processor numbers) to access unique memory regions or remote
devices.

All of these instructions may be executed in User mode and therefore arenot subject to any coprocessor
usability exceptions.

For all of the instructions which cause a context switch, there is a single instruction delay slot. That is, the
instruction immediately following the context-switching instruction is executed in the same context, and that
context’s CXPC is loaded with the address of the instruction after the delay slot. Immediately after the
execution of the delay slot instruction, the newly selected context begins execution at the instruction specified
by its CXPC register.

There are restrictions on the type of instruction that can be executed in the delay slot of context switching
instructions. These restrictions are detailed in a note following Table 16.

For several of the instructions, the descriptions are nearly identical, differing in only a few items. In order to
make it easier for the reader to identify only thedifferences, these are indicated withunderlinedtext. For an
explanation of the conventions employed in the algorithmic descriptions, refer to Section 3.1 on page 21.

40 Lexra Proprietary & Confidential Revision 1.4

Section 4. Instruction Extensions LX8380

Table 16: Context Switching Instructions

Instruction Syntax and Description

MYCX rD My Context

rD ← { 16’h0000, procNum[7:0], 5’b00000, cntxNum[2:0] }

The current context number is placed into rD[2:0]. If there are multiple
processors in the system, the number of the processor executing this
instruction is placed into rD[15:8]. Otherwise rD[15:8] is zeroed. All
other bits of rD are set to zeroes.

POSTCX rS, rT Post Event to Context

cntx ← rT[2:0]
temp ← cntx::CXSTATUS[15:8] & rS[31:24]
cntx::CXSTATUS[15:8] ← temp

Bits rT[2:0] are used as the target context cntx. Bits rS[31:24] are log-
ically ANDed with bits 15:8 (the WAIT-EVENT bits) of the CXSTATUS
register for context cntx, and that context’s CXSTATUS register is
updated with the result.

CSW rS Context Switch Unconditional

temp ← CXSTATUS[15:8] | rS[31:24]
CXSTATUS[15:8] ← temp
CXPC ← pc + 8
pc ← next_context::CXPC

Bits 15:8 (the WAIT-EVENT bits) from the current context’s CXSTA-
TUS register are logically ORed with rS[31:24] and the CXSTATUS
register is updated with the result. An unconditional context switch
occurs after the execution of this instruction’s delay slot. The context
scheduler determines the next context that is activated.

LW.CSW rT, offset(rS) Load Word Uncached with Context Switch

temp ← rS[31:0] + { 20 { offset[11] }, offset[11:0] }
rT ← Memory[temp]
CXSTATUS[3] ← 1’b1
CXPC ← pc + 8
pc ← next_cntx::CXPC

The offset, in bytes, is a signed 12-bit quantity that must be divisible
by 4 (since it occupies only 10 bits of the instruction word). The offset
is sign extended and added to the contents of rS to form the address
temp. The word addressed by temp is fetched using a split transaction
and loaded into rT. The WAIT-LOAD bit is set in this context’s CXSTA-
TUS register while the fetch is in progress. An unconditional context
switch occurs after the execution of this instruction’s delay slot. The
context scheduler determines the next context that is activated.
If temp does not specify an address in uncachable space, the result of
the operation is undefined.
If temp specifies an address in DMEM space, the result of the opera-
tion is undefined.
If temp is not word aligned, an address exception is taken and no con-
text switch occurs.

Revision 1.4 Lexra Proprietary & Confidential 41

LX8380 Section 4. Instruction Extensions

LT.CSW rT, offset(rS) Load TwinWord Uncached with Context Switch

temp ← rS[31:0] + { 19 { offset[12] }, offset[12:0] }
{ rT, rT+1 } ← Memory[temp]
CXSTATUS[3] ← 1’b1
CXPC ← pc + 8
pc ← next_cntx::CXPC

The offset, in bytes, is a signed 13-bit quantity that must be divisible
by 8 (since it occupies only 10 bits of the instruction word). The offset
is sign extended and added to the contents of the register rS to form
the address temp. The word addressed by temp is fetched using a
twinword split transaction, and loaded into rT (which must be an even
register). The word addressed by temp+4 is loaded into rT+1. The
WAIT-LOAD bit is set in this context’s CXSTATUS register while the
fetches are in progress. An unconditional context switch occurs after
the execution of this instruction’s delay slot. The context scheduler
determines the next context that is activated.
If temp does not specify an address in uncachable space, the result of
the operation is undefined.
If temp specifies an address in DMEM space, the result of the opera-
tion is undefined.
If temp is not twinword aligned, an address exception is taken and no
context switch occurs.

LQ.CSW rT, offset(rS) Load QuadWord Uncached with Context Switch

temp ← rS[31:0] + { 18 { offset[13] }, offset[13:0] }
{ rT, rT+1, rT+2, rT+3 } ← Memory[temp]
CXSTATUS[3] ← 1’b1
CXPC ← pc + 8
pc ← next_cntx::CXPC

The offset, in bytes, is a signed 14-bit quantity that must be divisible
by 16 (since it occupies only 10 bits of the instruction word). The off-
set is sign extended and added to the contents of the register rT to
form the address temp. The word addressed by temp is fetched using
a quadword split transaction, and loaded into rT (which must be a reg-
ister number divisible by four). The word addressed by temp+4 is
loaded into rT+1. The word addressed by temp+8 is loaded into rT+2.
The word addressed by temp+12 is loaded into rT+3. The WAIT-
LOAD bit is set in this context’s CXSTATUS register while the fetches
are in progress. An unconditional context switch occurs after the exe-
cution of this instruction’s delay slot. The context scheduler deter-
mines the next context that is activated.
If temp does not specify an address in uncachable space, the result of
the operation is undefined.
If temp specifies an address in DMEM space, the result of the opera-
tion is undefined.
If temp is not quadword aligned, an address exception is taken and no
context switch occurs.

Instruction Syntax and Description

42 Lexra Proprietary & Confidential Revision 1.4

Section 4. Instruction Extensions LX8380

WD[.CSW] rS, rT, devID Write Descriptor

addr ← { system_contant[23:0], devID[4:0], 3’b000 }
Memory[addr] ← { rS, rT }
if (.CSW)
 temp ← CXSTATUS[15:8] | rS[31:24]
 CXSTATUS[15:8] ← temp
 CXPC ← pc + 8
 pc ← next_cntx::CXPC

A 64-bit descriptor is formed, with the contents of rS in bits 63:32 and
the contents of rT in bits 31:0. If the optional.CSW extension is speci-
fied, then bits 63:56 of the descriptor are logically OR-ed with the
WAIT-EVENT bits of this context’s CXSTATUS register, which is
updated with the result. The processor constructs a system bus
address with bits 31:8 set to a system-specific constant, bits 7:3 set to
the value of the 5-bit devID field, and bits 2:0 all zeroes. A system bus
operation is performed to write bits 63:0 of the descriptor to the
device. If the optional.CSW extension is specified, the processor per-
forms a context switch after the execution of this instruction’s delay
slot. The context scheduler determines the next context that is acti-
vated.

Instruction Syntax and Description

Revision 1.4 Lexra Proprietary & Confidential 43

LX8380 Section 4. Instruction Extensions

WDLW.CSW rD, rS, rT, devID Write Descriptor with Load Word Uncached and Context Switch

addr ← { system_contant[23:0], devID[4:0], 3’b000 }
Memory[addr] ← { rS, rT }
rD ← Memory[addr]
CXSTATUS[3] ← 1’b1
CXPC ← pc + 8
pc ← next_cntx::CXPC

A 64-bit descriptor is formed, with the contents of rS in bits 63:32 and
the contents of rT in bits 31:0. The WAIT-LOAD bit of this context’s
CXSTATUS register is set. The processor constructs a system bus
address with bits 31:8 set to a system-specific constant, bits 7:3 set to
the value of the 5-bit devID field, and bits 2:0 all zeroes. A system bus
operation is performed to write bits 63:0 of the descriptor to the
device, also requesting an uncached split transaction read word
response. The processor performs a context switch after the execu-
tion of this instruction’s delay slot.
When the processor receives the corresponding read word response
from the system bus, it is loaded into register rD of the originating
context’s general purpose register file and that context’s WAIT-LOAD
flag is cleared.

WDLT.CSW rD, rS, rT, devID Write Descriptor with Load Twinword Uncached and Context Switch

addr ← { system_contant[23:0], devID[4:0], 3’b000 }
Memory[addr] ← { rS, rT }
{ rD, rD+1 } ← Memory[addr]
CXSTATU[3] ← 1’b1
CXPC ← pc + 8
pc ← next_cntx::CXPC

A 64-bit descriptor is formed, with the contents of rS in bits 63:32 and
the contents of rT in bits 31:0. The WAIT-LOAD bit of this context’s
CXSTATUS register is set. The processor constructs a system bus
address with bits 31:8 set to a system-specific constant, bits 7:3 set to
the value of the 5-bit deviceID field, and bits 2:0 all zeroes. A system
bus operation is performed to write bits 63:0 of the descriptor to the
device, also requesting an uncached split transaction read twinword
response. The processor performs a context switch after the execu-
tion of this instruction’s delay slot. The context scheduler determines
the next context that is activated.
When the processor receives the corresponding read twinword
response from the system bus, the first returned word is loaded into
register rD (which must specify an even register), and the second
returned word is loaded into rD+1 of the originating context’s general
purpose register file, and that context’s WAIT-LOAD flag is cleared.

Instruction Syntax and Description

44 Lexra Proprietary & Confidential Revision 1.4

Section 4. Instruction Extensions LX8380

Notes: The delay slot of the CSW, LW.CSW, LT.CSW, LQ.CSW, WD.CSW, WDLW.CSW, WDLT.CSW
and WDLQ.CSW instructions may not contain a branch, jump or MTCXC instruction.

The delay slot of the WDLW.CSW, WDLT.CSW WDLQ.CSW, WDLW.CSW, WDLT.CSWand
WDLQ.CSW instructions may not access to any register loaded by the instruction

4.2. Bit Field Processing Operations

Table 17 explains the details of the instructions used to manipulate bit fields.

As shown in Figure 4, for several of these instructions a width and insert offset specify a subfield of a 32-bit
register that is to be used as a target of the instruction. For the EXTIV and INSV paired instructions (or
EXTII and INSI), the extract offset and width can specify a (maximally 32-bit) subfield which straddles the
boundary of two source registers or is completely contained in either one of two potential source registers.
Figure 4, Insert and Extract Operations (Straddle Case), illustrates the straddle case.

It is worth noting that the standard MIPS instruction set includes Branch On Equal, and Branch On Not Equal
instructions. Therefore, the Extract instruction can be used to select a field that is tested by a conditional
branch, and no explicit Test instruction is necessary.

For several of the instructions, the descriptions are nearly identical, differing in only a few items. In order to
make it easier for the reader to identify only thedifferences, these are indicated withunderlined text.

WDLQ.CSW rD, rS, rT, devID Write Descriptor with Load Quadword Uncached and Context Switch

addr ← { system_contant[23:0], devID[4:0], 3’b000 }
Memory[addr] ← { rS, rT }
{ rD, rD+1, rD+2, rD+3 } ← Memory[addr]
CXSTATUS[3] ← 1’b1
CXPC ← pc + 8
pc ← next_cntx::CXPC

A 64-bit descriptor is formed, with the contents of rS in bits 63:32 and
the contents of rT in bits 31:0. The WAIT-LOAD bit of this context’s
CXSTATUS register is set. The processor constructs a system bus
address with bits 31:8 set to a system-specific constant, bits 7:3 set to
the value of the 5-bit devID field, and bits 2:0 all zeroes. A system bus
operation is performed to write bits 63:0 of the descriptor to the
device, also requesting an uncached split transaction read quadword
response. The processor performs a context switch after the execu-
tion of this instruction’s delay slot. The context scheduler determines
the next context that is activated.
When the processor receives the corresponding read quadword
response from the system bus, the first returned word is loaded into
register rD (which must specify a register number divisible by four),
the second returned word is loaded into rD+1, the third returned word
is loaded into rD+2, and the fourth returned word is loaded into rD+3
of the originating context’s general purpose register file, and that con-
text’s WAIT-LOAD flag is cleared.

Nomenclature: rS, rT, rD = r0 - r31
base = r0 - r31

Instruction Syntax and Description

Revision 1.4 Lexra Proprietary & Confidential 45

LX8380 Section 4. Instruction Extensions

Figure 4: Insert and Extract Operations (Straddle Case)

Table 17: Bit Field Processing Instructions

Instruction Syntax and Description

SETI rT, rS, width, offset Set Bits Immediate

rD[width+offset-1:offset] ← width { 1’b1 }

The offset is a value p in the range 0-31. The width is a value m in
the range 1-32 (which is encoded in the instruction as a 5-bit
value modulo 32 — that is, the value 32 is encoded as zero). The
bits rT[m+p-1:p] are set to ones. The remaining bits of rT are cop-
ied from the corresponding bits of rS. If m+p is greater than 32,
the results are unpredictable.

CLRI rT, rS, width, offset Clear Bits Immediate

rD[width+offset-1:offset] ← width { 1’b0 }

The offset is a value p in the range 0-31. The width is a value m in
the range 1-32 (which is encoded in the instruction as a 5-bit
value modulo 32 — that is, the value 32 is encoded as zero). The
bits rT[m+p-1:p] are set to zeroes. The remaining bits of rT are
copied from the corresponding bits of rS. If m+p is greater than
32, the results are unpredictable.

width

width

extract offset

0

Set, Clear,

Extract

 Insert

insert offset

31 0

063 32 31

31

extract from rT (EXTIV/EXTII)extract from rT (INSV/INSI)

unmodified fields from rS (SETI, CLRI, INSV/I)

width

INSERT register:

46 Lexra Proprietary & Confidential Revision 1.4

Section 4. Instruction Extensions LX8380

EXTIV rD, rS, rT Extract Bits for Insertion Variable

INSERT[47:32] ← rS[15:0]
xoffset ← rS[15:10]
width ← rS[9:5]

if (xoffset<32)
 if ((xoffset+width-1)<32)
 temp[width-1:0] ← rT[width+xoffset-1:offset]
 temp[31:width] ← (32-width) { 1’b0 }
 else
 temp[31-xoffset:0] ← rT[31:xoffset]
 temp[31:32-xoffset] ← (32-width) { 1’b0 }
else
 temp[31:0] ← 32’h0000_0000 }

rD ← temp
INSERT[31:0] ← temp

The bits rS[15:10] are decoded as an extraction offset n in the
range 0-63. The bits rS[9:5] are decoded as a width m in the
range 1-32 modulo 32. The bits rS[4:0] are decoded as an inser-
tion offset p in the range 0-31. These parameter fields of rS are
saved in the implied register INSERT. The remaining bits of rS are
ignored. Considering rT to contain the least significant 32 bits of
the extraction source, a 32-bit intermediate extraction value temp
is generated as follows:
1) if n<32 and (n+m-1) < 32, (least significant word only) the bits
rT[m+n-1:n] are copied into temp[m-1:0] and the remaining bits of
temp are set to zeroes.
2) if n<32 and (n+m-1) > 31, (straddle two words) the bits rT[31:n]
are copied into temp[31-n:0] and the remaining bits of temp are
set to zeroes.
3) if n>31, (most significant word only) temp[31:0] is set to all
zeroes.

The temp value is stored in rD and also saved in the implied regis-
ter INSERT.
If m+n is greater than 64, the results of this instruction, and a sub-
sequent INSV instruction are unpredictable.

Instruction Syntax and Description

Revision 1.4 Lexra Proprietary & Confidential 47

LX8380 Section 4. Instruction Extensions

INSV rD, rS, rT Insert Bits Variable

xoffset ← INSERT[47:42]
width ← INSERT[41:37]
ioffset ← INSERT[36:32]
temp ← INSERT[31:0]

if (xoffset<32)
 if ((xoffset+width-1)<32)
 result[31:0] ←temp[31:0]
 else
 result[31-xoffset:0] ← temp[31-xoffset:0]
 result[width-1:32-xoffset] ← rT[xoffset+width-33:0]
 if (width<32)
 result[31:width] = (32-width) { 1’b0 }
else
 result[width-1:0] ← rT[xoffset+width-33:xoffset-32]
 result[31:width] ← (32-width) { 1’b0 }

rD[width+ioffset-1:ioffset] ← result[width-1:0]

This instruction must be coded as the next sequential instruction
in the program sequence after an EXTIV. Otherwise, its results
are unpredictable.
All exceptions are inhibited for the execution of this instruction.
This includes hardware interrupts, debug exceptions and address
exceptions.
The parameter fields m, n, p and the intermediate extraction value
temp are taken from the implied register INSERT, as described for
EXTIV. Considering rT to contain the most significant 32 bits of
the extraction source, the final extracted value result is generated
as follows:
1) if n<32 and (n+m-1) < 32, the bits temp[31:0] are copied into
result[31:0].
2) if n<32 and (n+m-1) > 31, the bits temp[31-n:0] are copied into
result[31-n:0]. The bits rT[n+m-33:0] are copied into result[m-
1:32-n]. The remaining bits of result are set to zeroes.
3) if n>31, the bits rT[n+m-33:n-32] are copied into result[m-1:0].
The remaining bits of result are set to zeroes.

The bits from result[m-1:0] are copied into rD[m+p-1:p]. The
remaining bits of rD are copied from the corresponding bits of rS.
If m+n is greater than 64, or if m+p is greater than 32, the results
are unpredictable.

Instruction Syntax and Description

48 Lexra Proprietary & Confidential Revision 1.4

Section 4. Instruction Extensions LX8380

EXTII rD, rT, width, xoffset Extract Bits for Insertion Immediate

INSERT[47:42] ← xoffset
INSERT[41:37] ← width

if (xoffset<32)
 if ((xoffset+width-1)<32)
 temp[width-1:0] ← rT[width+xoffset-1:offset]
 temp[31:width] ← (32-width) { 1’b0 }
 else
 temp[31-xoffset:0] ← rT[31:xoffset]
 temp[31:32-xoffset] ← (32-width) { 1’b0 }
else
 temp[31:0] ← 32’h0000_0000 }

rD ← temp
INSERT[31:0] ← temp

The extract offset xoffset is a value n in the range 0-31. The width
is a value m in the range 1-32 (which is encoded in the instruction
as a 5-bit value modulo 32 — that is, the value 32 is encoded as
zero). These parameter fields are saved in the implied register
INSERT. Considering rT to contain the least significant 32 bits of
the extraction source, a 32-bit intermediate extraction value temp
is generated as follows:
1) if (n+m-1) < 32, (least significant word only) the bits rT[m+n-
1:n] are copied into temp[m-1:0] and the remaining bits of temp
are set to zeroes.
2) if (n+m-1) > 31, (straddle two words) the bits rT[31:n] are cop-
ied into temp[31-n:0] and the remaining bits of temp are set to
zeroes.

The temp value is stored in rD and also saved in the implied regis-
ter INSERT.

Instruction Syntax and Description

Revision 1.4 Lexra Proprietary & Confidential 49

LX8380 Section 4. Instruction Extensions

INSI rD, rS, rT, ioffset Insert Bits Immediate

xoffset ← INSERT[47:42]
width ← INSERT[41:37]
temp ← INSERT[31:0]

if (xoffset<32)
 if ((xoffset+width-1)<32)
 result[31:0] ←temp[31:0]
 else
 result[31-xoffset:0] ← temp[31-xoffset:0]
 result[width-1:32-xoffset] ← rT[xoffset+width-33:0]
 if (width<32)
 result[31:width] = (32-width) { 1’b0 }
else
 result[width-1:0] ← rT[xoffset+width-33:xoffset-32]
 result[31:width] ← (32-width) { 1’b0 }

rD[width+ioffset-1:ioffset] ← result[width-1:0]

This instruction must be coded as the next sequential instruction
in the program sequence after an EXTII. Otherwise, its results are
unpredictable.
All exceptions are inhibited for the execution of this instruction.
This includes hardware interrupts, debug exceptions and address
exceptions.
The parameter fields m, n and the intermediate extraction value
temp are taken from the implied register INSERT, as described for
EXTII. The insert offset ioffset is a value p in the range 0-31. Con-
sidering rT to contain the most significant 32 bits of the extraction
source, the final extracted value result is generated as follows:
1) if (n+m-1) < 32, the bits temp[31:0] are copied into result[31:0].
2) if (n+m-1) > 31, the bits temp[31-n:0] are copied into result[31-
n:0]. The bits rT[n+m-33:0] are copied into result[m-1:32-n]. The
remaining bits of result are set to zeroes.

The bits from result[m-1:0] are copied into rD[m+p-1:p]. The
remaining bits of rD are copied from the corresponding bits of rS.
If m+p is greater than 32, the results are unpredictable.

Instruction Syntax and Description

50 Lexra Proprietary & Confidential Revision 1.4

Section 4. Instruction Extensions LX8380

HASH rD, rS, keysize Hash to Key

rD ← Hash (rS[keysize-1:0], keysize)

The 5-bit keysize is a value k in the range 4-24. If k is outside this
range, the results are unpredictable. The 32 source bits contained
in rS are hashed to form a key of k bits. The key is stored in rD[k-
1:0]. The remaining bits of rD are zeroed.
For a given keysize, each bit of the key is formed as the logical
XOR of a subset of the source bits. For any keysize these subsets
are mutually exclusive and exhaustive. That is, each source bit is
included in the XOR function of one and only one of the key bits.
The composition of the XOR subsets for each keysize is indicated
in Table 18, Hash Instruction Key Bit Definition.

MSB rD, rS, rT Most Significant Bit Encode

temp ← rS & rT
msb ← 33
repeat
 msb ← msb - 1
until (temp[msb-1] || (msb=0))
rD[31:6] ← 0
rD[5:0] ← msb

The 32-bit temp is computed as the logical AND of rS with rT.
The 6-bit result indicates the most significant bit that is set in temp
according to the following table (where “x” means don’t care):
 temp = 00000000 00000000 00000000 00000000 : result= 0
 temp = 00000000 00000000 00000000 00000001 : result= 1
 temp = 00000000 00000000 00000000 0000001x : result= 2
 temp = 00000000 00000000 00000000 000001xx : result= 3
 etc.
 temp = 1xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx : result= 32
The result is stored in rD[5:0]. The remaining bits of rD are
zeroed.

Instruction Syntax and Description

Revision 1.4 Lexra Proprietary & Confidential 51

LX8380 Section 4. Instruction Extensions

Nomenclature: rT, rS, rD = r0 - r31

Notes: For EXTIV, specifying r0 for rS implies (insert / extract) offsets of 0 and a width of 32.

INSV (INSI) must be coded as the next sequential instruction following EXTIV (EXTII). There is only one
INSERT register in the processor (not one per context) which only exists to pass information from
EXTIV(EXTII) to INSV(INSI). The processor inhibits exceptions for INSV(INSI) to ensure that if the
EXTIV(EXTII) instruction completes, the immediately subsequent INSV(INSI) will also complete.

For EXTII the extract offset may not be > 32 (but straddle is allowed) due to format constraints. This should
NOT be a problem since the immediate is known at compile time. If an offset > 32 were needed, the next
most significant register could be used for rT and the offset reduced by 32.

The EXTIV and INSV pair of instructions are intended to allow numerous non-contiguous fields in a packet
to be compacted into a single contiguous key. Even if the alignment of the packet in a set of registers is not
known until run time, a sequence of 3 instructions per field can be used to accomplish this compaction.

In the example in Figure 5, packet data is loaded into source registers s1, s2, and s3 and fields F1 and F2 are
to be compacted into destination register d1. However, it is not known until run time which of four byte
alignment cases of the packet is valid. At run time, r1 is loaded with a value corresponding to the alignment.
Specifically, the value needed in bits 15:10 of r1 is the two’s complement of the alignment in bits. A single
instruction (ori r1, r0, (-n<<10)) loads the proper value for any of the cases.

JOR rS, rT Jump to Offset Register

offset ← rS[15:3] | rT[12:0]
target[31:16] ← rS[31:16]
target[15:3] ← offset
target[2:0] ← 3’b000
pc ← target

The 13-bit jump offset is computed as the logical OR of rT[12:0]
with rS[15:3]
The 32-bit target address is computed as follows:
target [31:16] = rS[31:16]
target [15:3] = offset
target [2:0] = zeroes.
The other bits of rT and rS are ignored.
The program unconditionally jumps to the target address with a
delay of one instruction just like the JR instruction. Handling of the
delay slot instruction for exceptions is the same as for the JR
instruction.

Instruction Syntax and Description

52 Lexra Proprietary & Confidential Revision 1.4

Section 4. Instruction Extensions LX8380

Figure 5: Packet Field Compaction with Variable Alignment

The following code sequence assumes that r1 has been initialized as needed according to the case in
question. As shown, a common code path is used regardless of the alignment. Note that r0 is a 0 source and
don’t care destination.

The above example shows how the packet alignment is handled with a value held in a single register,
placed in the appropriate bit position, so that it can be subtracted from the otherwise fixed extraction offsets.
The widths and insertion offsets are invariant. This paradigm works provided that two conditions are met:

1) The variability in alignment never causes a field to straddle different pairs of source registers. A
sufficient condition is if the extracted field does not cross a word boundary in the nominal case (in other
words, the default extract offset is greater than 31.)

2) The insertion width and alignment never cause a field to straddle a word boundary in the destination
key. This problem can be minimized by reordering the fields in the destination key, but in the worst case, a
field to may be split into two parts to avoid the issue.

If necessary, both of these restrictions can always be satisfied by splitting some source fields into two
fields.

r1 contains the value to be subtracted
from the 6-bit default extraction offsets.

addiu r2, r1, (F1_OFFE<<10 + F1_WID<<5 + F1_OFFI)
extiv r0, r2, s2 # F1 is from s1 and/or s2
insv d1, r0, s1 # insert F1 into d1
addiu r2, r1, (F2_OFFE<<10 + F2_WID<<5 + F2_OFFI)
extiv r0, r2, s3 # F2 is from s2 and/or s3
insv d1, d1, s2 # merge F2 into d1
...more fields handled the same way

s1 s2 s3

F1 r1 = 0

r1 = (-16) << 10

r1 = (-24) << 10

r1 = (-8) << 10

F2

F1 F2

F1 F2

F1 F2

F1F2

d1

Revision 1.4 Lexra Proprietary & Confidential 53

LX8380 Section 4. Instruction Extensions

Table 18: Hash Instruction Key Bit Definition

Keysize KeyBit Source Bits Included in XOR to form Key Bit

4

3
2
1
0

28 24 20 16 12 8 4 0
29 25 21 17 13 9 5 1
30 26 22 18 14 10 6 2
31 27 23 19 15 11 7 3

Keysize KeyBit Source Bits Keysize KeyBit Source Bits

5

4
3
2
1
0

26 25 16 9 3 0
28 24 20 12 8 4
29 21 17 13 5 1
30 22 18 14 10 6 2
31 27 23 19 15 11 7

6

5
4
3
2
1
0

26 24 18 10 9 1
25 19 16 11 3 0
28 20 12 8 4
29 21 17 13 5
30 22 14 6 2
31 27 23 15 7

7

6
5
4
3
2
1
0

25 16 9 1
26 24 18 10
19 11 3 0
28 20 12 8 4
29 21 17 13 5
30 22 14 6 2
31 27 23 15 7

8

7
6
5
4
3
2
1
0

24 16 8 0
25 17 9 1
26 18 10 2
27 19 11 3
28 20 12 4
29 21 13 5
30 22 14 6
31 23 15 7

Keysize KeyBit Source Bits Keysize KeyBit Source Bits Keysize KeyBit Source Bits

9

8
7
6
5
4
3
2
1
0

26 16 9
24 8 0
25 17 1
18 10 2
27 19 11 3
28 20 12 4
29 21 13 5
30 22 14 6
31 23 15 7

10

9
8
7
6
5
4
3
2
1
0

26 13 9
20 16 3
24 8 0
25 17 1
18 10 2
27 19 11
28 12 4
29 21 5
30 22 14 6
31 23 15 7

11

10
9
8
7
6
5
4
3
2
1
0

30 7
26 13 9
20 16 3
24 8 0
25 17 1
18 10 2
27 19 11
28 12 4
29 21 5
22 14 6
31 23 15

12

11
10
9
8
7
6
5
4
3
2
1
0

 7 3
30 26
13 9
20 16
24 8 0
25 17 1
18 10 2
27 19 11
28 12 4
29 21 5
22 14 6
31 23 15

13

12
11
10
9
8
7
6
5
4
3
2
1
0

20 13
 7 3
30 26
25 9
16 0
24 8
17 1
18 10 2
27 19 11
28 12 4
29 21 5
22 14 6
31 23 15

14

13
12
11
10
9
8
7
6
5
4
3
2
1
0

30 13
20 7
19 3
26 10
25 9
16 0
24 8
17 1
18 2
27 11
28 12 4
29 21 5
22 14 6
31 23 15

54 Lexra Proprietary & Confidential Revision 1.4

Section 4. Instruction Extensions LX8380

15

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

29 13
30 4
20 7
19 3
26 10
25 9
16 0
24 8
17 1
18 2
27 11
28 12
21 5
22 14 6
31 23 15

16

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

20 4
29 13
30 14
23 7
19 3
26 10
25 9
16 0
24 8
17 1
18 2
27 11
28 12
21 5
22 6
31 15

17

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

 4
20
29 13
30 14
23 7
19 3
26 10
25 9
16 0
24 8
17 1
18 2
27 11
28 12
21 5
22 6
31 15

18

17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

29
 4
20
13
30 14
23 7
19 3
26 10
25 9
16 0
24 8
17 1
18 2
27 11
28 12
21 5
22 6
31 15

19

18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

14
29
 4
20
13
30
23 7
19 3
26 10
25 9
16 0
24 8
17 1
18 2
27 11
28 12
21 5
22 6
31 15

20

19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

23
14
29
 4
20
13
30
 7
19 3
26 10
25 9
16 0
24 8
17 1
18 2
27 11
28 12
21 5
22 6
31 15

21

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

 3
23
14
29
 4
20
13
30
 7
19
26 10
25 9
16 0
24 8
17 1
18 2
27 11
28 12
21 5
22 6
31 15

22

21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

26
 3
23
14
29
 4
20
13
30
 7
19
10
25 9
16 0
24 8
17 1
18 2
27 11
28 12
21 5
22 6
31 15

23

22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

 9
26
 3
23
14
29
 4
20
13
30
 7
19
10
25
16 0
24 8
17 1
18 2
27 11
28 12
21 5
22 6
31 15

Keysize KeyBit Source Bits Keysize KeyBit Source Bits Keysize KeyBit Source Bits

Revision 1.4 Lexra Proprietary & Confidential 55

LX8380 Section 4. Instruction Extensions

4.3. Cross Context Access Operations

Table 19 explains the details of instructions that are used to access the general registers or the context control
registers of another context. For the control registers, it is also possible for a thread to access its own
CXSTATUS register.

The target context for all of these instructions is specified in a new Lexra Coprocessor 0 register, called
MOVECX. That register is itself accessed with MTLXC0 and MFLXC0 variants of the MIPS standard
MTC0 and MFC0 instructions. These new instructions are used to access Lexra defined Coprocessor 0
registers that are not in the standard MIPS Coprocessor 0 space. The encoding of these instructions, which
use the COP0 major opcode, is described in Section 4.5.

It is expected that these instructions will only be used in kernel mode. Therefore, they are all subject to the
Coprocessor Unusable exception for Coprocessor 0 as are the MTLXC0 and MFLXC0 instructions.

Keysize KeyBit Source Bits

24

23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

16
 9
26
 3
23
14
29
 4
20
13
30
 7
19
10
25
 0
24 8
17 1
18 2
27 11
28 12
21 5
22 6
31 15

56 Lexra Proprietary & Confidential Revision 1.4

Section 4. Instruction Extensions LX8380

Table 19: Cross Context Access Instructions

Nomenclature:

Notes: Execution of MTCXC rT, CXPC withMOVECX= current context (attempt to change the currently
executing context’s CXPC) results in unpredictable operation.

Instruction Syntax and Description

MFCXG rD, gT Move From Context General Register

cntx ← MOVECX[2:0]
rD ← cntx::gT

Bits MOVECX[2:0] are used to determine the source context cntx.
The contents of general register gT in context cntx are loaded into
the current context’s general register rD

MTCXG rT, gD Move To Context General Register

cntx ← MOVECX[2:0]
cntx::gD ← rT

Bits MOVECX[2:0] are used to determine the target context cntx.
The general register gD in context cntx is loaded from the con-
tents of the current context’s general register rT.

MFCXC rD, cT Move From Context Control Register

cntx ← MOVECX[2:0]
rD ← cntx::cT

Bits MOVECX[2:0] are used to determine the source context cntx.
The contents of control register cT in context cntx are loaded into
the current context’s general register rD.
If a MFCXC instruction that reads CXSTATUS of a target con-
text is executed as the first instruction immediately following a
POSTCX to that context, it is unpredictable whether MFCXC
returns the new or old value of CXSTATUS.

MTCXC rT, cD Move To Context Control Register

cntx ← MOVECX[2:0]
cntx::cD ← rT

Bits MOVECX[2:0] are used to determine the target context cntx.
The control register cD in context cntx is loaded from the contents
of the current context’s general register rT.

rT, rD, gT, gD = r0 - r31
cD, cT = CXSTATUS, CXPC

Revision 1.4 Lexra Proprietary & Confidential 57

LX8380 Section 4. Instruction Extensions

To examine its own CXSTATUS register a thread can execute this sequence:

4.4. Checksum Addition

Table 20 explains the instruction that may be used to calculate a checksum for an Internet Protocol Header
using 16-bit ones complement addition.

Table 20: Checksum Addition Instructions

Notes: In ones complement arithmetic there are two representations of zero: 0x0000 (+0) and 0xffff (-0).
Addition of non-zero quantities can never result in +0, only -0. Addition of -0 to either +0 or -0 results in -0.

This instruction can be used to generate or check the 16-bit checksum used in internet packets. Without
regard to halfword alignment, all of the 32-bit words to be included are incrementally added using ACS2. A
final 16-bit shift and one more ACS2 instruction is used to “fold” the checksum into 16 bits:

MYCX r1
MTLXC0 r1, MOVECX
MFCXC r2, CXSTATUS

Instruction Syntax and Description

ACS2 rD, rS, rT Dual Add for Checksum

templo[16:0] ← { 1’b0, rS[15:0] } + { 1’b0, rT[15:0] }
templo[15:0] ← templo[15:0] + { 15’h000, templo[16] }
temphi[16:0] ← { 1’b0, rS[31:16] } + { 1’b0, rT[31:16] }
temphi[15:0] ← temphi[15:0] + { 15’h000, temphi[16] }
rD ← { temphi[15:0], templo[15:0] }

Dual 16-bit ones complement addition. Considering all quantities
as unsigned 16-bit integers, add the contents of rS[15:00] to
rT[15:00] and, independently add the contents of rS[31:16] to
rT[31:16]. For each independent addition, if there is a carry out of
the most significant bit of its result, add one to that result to form
its final result. The final results of the two additions are placed in
rD[15:00] and rD[31:16].

la r1, PACKETADDR # get packet address
lw r2, 0(r1) # get many words
lw r3, 4(r1)
lw r4, 8(r1)
lw r5, 12(r1)
lw r6, 16(r1)
lw r7, 20(r1)
...
acs2 r2, r2, r3 # add them together
acs2 r2, r2, r4
acs2 r2, r2, r5
acs2 r2, r2, r6
acs2 r2, r2, r7
...
srl r3, r2, 16 # fold over accumulator
acs2 r2, r2, r3 # r2[15:0] has the answer

58 Lexra Proprietary & Confidential Revision 1.4

Section 4. Instruction Extensions LX8380

4.5. LX8380 Instruction Summary

Table 21: Instruction Summary

Instruction Description

Context Control Operations and Data Transfers

MYCX rD read My Context

POSTCX rS, rT Post event to a Context

CSW rS Context Switch

LTW rT, disp(base) Load Twinword

LW.CSW rT, disp(base) Load Word Uncached with Context Switch

LT.CSW rT, disp(base) Load Twinword Uncached with Context Switch

LQ.CSW rT, disp(base) Load Quadword Uncached with Context Switch

WD.[CSW] rS, rT, devID Write Descriptor to Device [with Context Switch]

WDLW.CSW rD, rS, rT, devID Write Descriptor to Device
and Load Word/Twinword/Quadword Uncached
with Context SwitchWDLT.CSW rD, rS, rT, devID

WDLQ.CSW rD, rS, rT, devID

Bit Field Operations

SETI rT, rS, width, offset Set Subfield to Ones

CLRI rT, rS, width, offset Clear Subfield to Zeroes

EXTIV rD, rS, rT Extract Subfield and prepare for Insertion Variable

INSV rD, rS, rT Insert Extracted Subfield Variable

EXTII rD, rT, width, offset Extract Subfield and prepare for Insertion Immediate

INSI rD, rS, rT, offset Insert Extracted Subfield Variable Immediate

ACS2 rD, rS, rT Dual 16-bit Ones Complement Add for Checksum

HASH rD, rS, keysize Hash data to a key

MSB rD, rS, rT Find Most Significant Bit

JOR rS, rT Jump to Offset Register

Cross-Context Access Operations

MFCXG rD, gT Move from a Context gpr

MTCXG rT, gD Move to a Context gpr

MFCXC rD, cT Move from a Context control register

MTCXC rT, cD Move to a Context control register

Revision 1.4 Lexra Proprietary & Confidential 59

LX8380 Section 5. Coprocessor Interface

5. Coprocessor Interface

The LX8380 processor provides Coprocessor Interfaces (CIs) for the attachment of application-specific
coprocessors. This section provides a description of these access points.

5.1. Attaching a Coprocessor Using the Coprocessor Interface (CI)

A coprocessor may contain up to 32 general registers and up to 32 control registers. Each of these registers is
up to 32 bits wide. Typically, programs use the general registers for loading and storing data on which the
coprocessor operates. Data is moved to the coprocessor’s general registers from the processor’s general
registers with the MTCz instruction. Data is moved from the coprocessor’s general registers to the processor’s
general registers with the MFCz instruction. Main memory data is loaded into or stored from the
coprocessor’s general registers with the LWCz and SWCz instructions.

Programs may load and store the coprocessor’s control registers from the processor’s general registers with
the CTCz and CFCz instructions respectively. Programs may not load or store the control registers directly
from main memory.

The coprocessor may also provide a condition flag to the processor. The condition flag is tested with the
BCzT and BCzF instructions. These instructions indicate that the program should branch if the condition is
true (BCzT) or false (BCzF).

5.2. Coprocessor Interface (CI) Signals

The CI provides the mechanism to attach a custom coprocessor to the processor. The CI snoops the
instruction bus for coprocessor instructions and then gives the coprocessor the signals necessary for reading
or writing the general and control registers. I/O is relative to the LX8380 CI.

Table 22: Coprocessor Interface Signals

Signal I/O Description

Czcondin input Branch flag.

Czrd_addr[4:0] output Read address.

Czrd_cntx_[2:0] output Cop read context number.

Czrhold output Coprocessor must stall when asserted (one).

Czrd_gen output General register read command.

Czrd_con output Control register read command.

Czrd_data[31:0] input Read data.

Czwr_addr[4:0] output Write address.

Czwr_cntx[2:0] output Cop write context number.

Czwr_gen output General register write command.

60 Lexra Proprietary & Confidential Revision 1.4

Section 5. Coprocessor Interface LX8380

In the above table, z indicates a user coprocessor number (1 or 2). The addresses, output data, and control
signals are supplied to the application’s coprocessor on the rising edge of the system clock.

5.3. Coprocessor Write Operations

During a coprocessor write, the CI sends Czwr_addr and Czwr_data, and asserts either Czwr_gen or
Czwr_con. The coprocessor write operations are subject to a pipeline hold. That is, if either of the write
control signals is asserted while Czrhold is asserted, the coprocessor must defer the write to the appropriate
register on the subsequent rising edge of the clock. The target register is a decoding of Czwr_addr, Czwr_gen
and Czwr_con. The LWCz, MTCz, and CTCz instructions cause a coprocessor write.

Figure 6 illustrates two coprocessor write operations. The operation labeled A does not encounter a pipeline
hold. The operation labeled B encounters a pipeline hold that lasts one cycle. (The Czwr_cntx_W[2:0] output
is not shown in the diagram. The transitions on this signal correspond to transitions on Czwr_addr_W[2:0].)

Figure 6: Coprocessor Write

5.4. Coprocessor Read Operations

During a coprocessor read, the CI sends Czrd_addr and asserts either Czrd_gen or Czrd_con. The
coprocessor must return valid data through Czrd_data in the following clock cycle. If the processor asserts
Czrhold, indicating that it is not ready to accept the coprocessor data, the coprocessor must hold the previous
value of Czrd_data. The target register for the read is a decoding of Czrd_addr, Czrd_gen, and Czrd_con. The
instructions causing a coprocessor read are SWCz, MFCz, and CFCz.

Figure 7 illustrates three coprocessor read operations. The signal names beginning with Cz_stage_ represent
application specific signals in a coprocessor design and are shown to illustrate the pipelining within a
coprocessor. Coprocessor designs that perform internal operations as a result of a read must include such
stages in their read logic to allow for the cancellation of a coprocessor read that could arise from an exception
that is encountered during an earlier instruction. (This is possible, for example, if the coprocessor implements
a read FIFO See Figure 8 and Figure 9 for examples of instruction cancellations).

In the example of Figure 7, coprocessor read operation A encounters a pipeline hold while in the A stage.
Operations A, B and C encounter a pipeline hold while in the E, A and W stages respectively. Although not
shown in the diagram, coprocessor operations can also be held while they are in the M stage. (The

Czwr_con output Control register write command.

Czwr_data[31:0] output Write data.

Czinvld_M output One indicates invalid instruction in M stage.

Czxcpn_M output Exception flag, one indicates exception in M stage.

Signal I/O Description

CLK

Czwr_cntx_W[2:0]

Czwr_addr_W[4:0]

Czwr_gen_W

Czwr_data_W[31:0]

Czrhold

A B
A B

A B

D0117

Revision 1.4 Lexra Proprietary & Confidential 61

LX8380 Section 5. Coprocessor Interface

Czrd_cntx_S[2:0] output is not shown in the diagram. The transitions on this signal correspond to transitions
on Czrd_addr_S[2:0].)

Figure 7: Coprocessor Read

The CPU stalls the pipeline so that the program can access data read by a coprocessor instruction in the
immediately following instruction. For example, if an MFCz instruction reads data from the coprocessor and
stores it in the processor’s general register $4, the program can get access to that data in the following
instruction:

When the processor initiates a coprocessor read, the coprocessor must return valid data in the following clock
cycle. The coprocessor cannot stall the CPU. Applications must ensure that the source code does not access
invalid coprocessor data if the coprocessor operations take several clock cycles to complete. This is done in
one of three ways:

• Ensure that software does not access data from the coprocessor until N instructions after
the coprocessor operation has started. This is the least desirable method as it depends on
the relative execution of the processor and coprocessor. It can also complicate software
debug.

• Have the coprocessor send an interrupt to the processor, and the service routine for that
interrupt accesses the appropriate coprocessor registers.

• Have the coprocessor set the Czcondin flag when its operation is complete. The source
code can poll the flag as shown in the example below:

5.5. Coprocessor Interface and Pipeline Stages

Coprocessor writes occur in the W stage of the instruction pipeline. For coprocessor reads, the processor

mfc2 $4, $3 # Move from COP2 to CPU register $4
subu $5, $4, $2 # Subtract $R2 from $R4 and store in $5

mtc2 $2, $3 # store data to COP2 general register $3
ctc2 $3, $5 # set COP2 control register $5 to start
nop

loop: bc2f loop # branch back to loop if Czcondin bit off
nop # branch delay slot
mfc2 $4, $7 # get results from COP2 general register $7

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czrd_data_E[31:0]

Cz_stage_A

Cz_stage_M

Cz_stage_W

Czrhold

Czxcpn_M

Czinvld_M

A B C
A B C

A B C
A B C

A B C
A B C

D0118

62 Lexra Proprietary & Confidential Revision 1.4

Section 5. Coprocessor Interface LX8380

generates address, rd_gen, and rd_con signals during the E stage, and the coprocessor returns data during the
A stage which is passed by the CI to the processor in the M stage. The processor introduces two pipeline
bubbles after coprocessor instructions to ensure that the result of a MTCz instruction can be used by the
immediately following instruction.

 mtc2 I D S E A M W
 bubble 1 I D S E A M W
 bubble 2 I D S E A M W
 mfc2 I D S E A M W

 wr_gen (W) X
 rd_gen (E) X
 rd_data (A) X

5.5.1. Pipeline Holds

The Czwr_addr, Czwr_data, Czwr_gen and Czwr_con signals need not be registered. The coprocessor may
decode these W stage signals directly to the appropriate register. However, the coprocessor must ignore the
assertion of the write control signals when Czrhold is asserted. See Figure 6.

The coprocessor must register the read address and the control signals Czrd_gen and Czrd_con. It must hold
the A stage registered values of these signals when Czrhold is active high, and should make the read data
output a function of the A stage registered read address and control signals. If the coprocessor includes
additional internal stages that perform actions as a result of a read operation, they must also be held by the
Czrhold signal. See Figure 7.

5.5.2. Pipeline Invalidation

Under certain circumstances the instruction pipeline can contain an instruction that must be discarded. This
may be due to mispredicted branches, cache misses, exceptions, inserted pipeline bubbles etc. In such cases,
the CI may decode an instruction that must actually be discarded.

For the coprocessor write-type instructions, the CI will only issue the W stage control signals Czwr_gen and
Czwr_con for valid instructions. The coprocessor does not need to qualify these controls.

For the coprocessor read-type instructions, the CI may issue the E stage control signals Czrd_gen and
Czrd_con for instructions that must be discarded. If the coprocessor can tolerate speculative reads then it need
not qualify those signals. However, if the coprocessor performs “destructive” reads, such as updating a FIFO
pointer upon read, then it must use the qualifying signals Czxcpn_m and Czinvld_m as follows:

When the Czxcpn_M signal is asserted by the processor, the coprocessor must discard any S, E and A stage
operations, even if Czrhold is also asserted. This Czxcpn_M signal indicates that preceding instruction in the
M stage of the processor pipeline has taken an exception and that subsequent instructions in the pipeline must
be discarded. Figure 8 illustrates the occurrence of an exception while a coprocessor instruction is at the S, E
or A stages.

Revision 1.4 Lexra Proprietary & Confidential 63

LX8380 Section 5. Coprocessor Interface

Figure 8: Exception During Coprocessor Read

The processor asserts Czinvld_M signal to invalidate the instruction in the M stage. If the coprocessor cannot
tolerate speculative reads, it must tentatively compute its E, A and M stage results for any read operation. If
Czinvld_M is asserted when the read operation is in the M stage (including any period when Czrohold is
asserted), then the coprocessor must discard the tentative results. If the read operation passes advances to the
W stage without the assertion of Czinvld_M, then the coprocessor must commit its temporary results. An
example of an invalidated read operation is shown in Figure 9.

Figure 9: Invalidation of Coprocessor Read

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czrd_data_E[31:0]

Cz_stage_A[1:0]

Cz_stage_M[1:0]

Cz_stage_W[1:0]

Czrhold

Czxcpn_M

Czinvld_M

A B C
A B C

B C
C

D0119

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czrd_data_E[31:0]

Cz_stage_A

Cz_stage_M

Cz_stage_W

Czrhold

Czxcpn_M

Czinvld_M

A
A

A
A

A

D0120

64 Lexra Proprietary & Confidential Revision 1.4

Section 5. Coprocessor Interface LX8380

Revision 1.4 Lexra Proprietary & Confidential 65

LX8380 Section 6. Local Memory

6. Local Memory

6.1. Local Memory Overview

This section describes how memories are configured and connected to the LX8380 using the Local Memory
Interfaces (LMIs). This section provides a brief summary of the conventions and supported memories.
Section 6.2 describes the control register that allows software control over certain aspects of the LMIs. The
subsequent sections cover each of the LMIs in detail.

This section also discusses configuration options and the ports that customers must access to connect
application specific RAMs that are used by the LX8380 LMIs. All of the signals between the LMIs and
RAMs are automatically configured bylconfig, the LX8380 configuration tool.Lconfig also produces
documentation of the exact RAMs required for the chosen configuration settings, and generates RAM models
used for RTL simulation.

The LMIs connect to RAMs that service the LX8380 processor’s local instruction and data busses. The LMIs
also provide the pathways from the processor to the system bus. The LX8380 includes an LMI for each of the
local memory types. The sizes of the RAMs are customer selectable. The LX8380 LMIs directly support
synchronous RAMs that register the address, write data, and control signals at the RAM inputs. The LMIs
also supply redundant read enable and chip select lines for each RAM, which may be required for some
RAM types.

Lexra supplies an integration layer for the LMIs and the memory devices connected to them. In this layer,
memory devices are instanced as generic modules satisfying the depth and width requirements for each
specific memory instance. Thelconfig utility supplies a summary of the memory devices required for the
chosen configuration. In most cases, customers simply need to write a wrapper that connects the generic
module port list to a technology specific RAM instance inside the RAM wrapper.

The LX8380 is configurable for a 16, 32, 64, or 128-byte cache line size. The tag store RAM sizes shown in
the tables of this section assume a32-byte line size. The documentation produced bylconfig indicates the
required tag RAMs for the selected configuration options, including the line size. As a general rule, a
doubling of the line size results in halving the tag store depth.

The valid bits within tag stores are automatically cleared by the LMIs upon reset. The data cache implements
write-through or write-back protocols, selectable withlconfig. Caches do not snoop the system bus. The
LX8380 uses RAMs with byte write granularity for its data stores. Byte write granularity results in more
efficient operation of store byte and store half-word instructions.

The LMIs use physical addresses for all operations. Caches are physically indexed and store physical tags.

Table 23 summarizes the local memories that can be integrated with the LX8380.

66 Lexra Proprietary & Confidential Revision 1.4

Section 6. Local Memory LX8380

Table 23: Local Memory Interface Modules

6.2. Cache Control Register: CCTL

CCTL. CP0 General Register Address = 20

When reading this register, the contents of the Reserved bits are undefined. When writing this register, the
contents of the Reserved bits should be preserved.

The IMEMFill and IMEMOff bits of the CCTL register control the contents and use of any local IMEM
memory configured into the LX8380. When the LX8380 is reset, the LMI clears an internal register to
indicate that the entire IMEM LMI contents are invalid. When IMEM is invalid, all cacheable fetches from
the IMEM region will be serviced by the instruction cache, if an instruction cache is present.

A transition from 0 to 1 on IMEMFill causes the LMI to initiate a series of line read operations to fill the
IMEM contents. The addresses used for these reads are defined by the configured BASE and TOP addresses
of the IMEM, described in Section 6.5. The processor stalls while the entire IMEM contents are filled by the
LMI. Thereafter, the LMI sets its internal IMEM valid bit and will service any access to the IMEM range
from the local IMEM memory. The time that an IMEM fill takes to complete is the number of line reads
needed to fill the IMEM range, multiplied by the latency of one line read, assuming there is no other system
bus traffic.

A transition from 0 to 1 on IMEMOff causes the LMI to clear its internal IMEM valid bit. Subsequent
cacheable fetches from the IMEM region will be serviced by the instruction cache. To use the IMEM again,
an application must re-initialize the IMEM contents through the IMEMFill bit of the CCTL register.

A transition from 0 to 1 on DMemOff causes the Dcache LMI to disable the DMEM. Subsequent access in
the DMEM region will be serviced by the data cache (cacheable addresses) or system memory (uncacheable
addresses). To use the DMEM after it has been disabled, an software must cause a transition from 0 to 1 on
DMemOn. This will re-enable the DMEM. The state of the DMEM will be as it was when it was disabled.

The ILock field controls set locking in the two-way set associative instruction cache. When ILock is 00, the
instruction cache operates normally. When ILock is 10, “LockGather” mode, all cached instruction
references are forced to occupy way 1. The hardware will invalidate lines in way 0 if necessary to accomplish
this. When ILock is 11, “LockedDown” mode, lines in way 1 are never displaced – i.e. they are locked in the
cache. Way 0 is used to hold other lines as needed. ILock = 01 is reserved. If this setting is used, results are
undefined.

To utilize the cache locking feature, software should execute at least one pass of critical subroutines or loops
with ILock set to 10. After this has been done, ILock should be set to 11 to lock the critical code into way 1,

Name Description

ICACHE Direct mapped or two-way set associative instruction cache.

IMEM Instruction RAM.

DCACHE Direct mapped or two-way set associative data cache.

DMEM Data RAM.

31-12 11 10 9 8 7-6 5 4 3-2 1 0

Rsrvd DMEMOff DMEMOn DWBInval DWB Rsrvd IMEMOff IMEMFill ILock IInval DInval

Revision 1.4 Lexra Proprietary & Confidential 67

LX8380 Section 6. Local Memory

and use way 0 for other code.

The IInval bit controls hardware invalidation of the instruction cache. A transition from 0 to 1 on IInval
initiates a hardware invalidation sequence of the entire instruction cache.

The DInval, DWB and DWBInval bits control hardware invalidation of the data cache. A transition from 0 to
1 on DInval initiates a hardware invalidation sequence of the entire data cache. Any dirty lines are discarded,
i.e. not written back to main memory. A transition from 0 to 1 on DWB initiates a hardware sequence to
write-back all dirty lines in the data cache, leaving them in the clean state. Lines that are already clean or
invalid have no operation performed. A transition from 0 to 1 on DWBInval initiates a hardware sequence to
write-back all dirty lines in the data cache, and to invalidate all lines in the data cache regardless of their initial
state. A simultaneous (with one MTC0 instruction) transition from 0 to 1 on more than one of DInval, DWB
or DWBInval leads to unpredictable results. The DMEM, if present, is unaffected data cache CCTL
operations.

The hardware invalidation sequence for the instruction and data caches requires up to four cycles per cache
line to complete. When dirty data must be written back to main memory, the amount of time required is
dependent on the state of the data cache and the performance of the system bus.

The LX8380 observes changes in the contents of the CCTL register in the W stage. Instructions that are in
progress in earlier stages will not be affected by an instruction cache or data cache invalidation, or IMEM fill.
This means, for example, that after a write to CCTL that invalidates the instruction cache, several instructions
that were fetched before the invalidation may be executed, even if those instructions were invalidated from
the instruction cache.

If a small number of lines known must be invalidated, it is more efficient for software to execute the CACHE
instruction to affect the state of specific cache lines. This is described in the next section.

68 Lexra Proprietary & Confidential Revision 1.4

Section 6. Local Memory LX8380

6.3. CACHE Instruction

The CACHE instruction allows software to affect the state of specific cache lines.

6.4. Instruction Cache (ICACHE) LMI

The ICACHE LMI supplies the interface for a direct mapped or two-way set associative instruction cache
attached to the LX8380 local bus. The degree of associativity is specified through lconfig. The ICACHE LMI
participates in cacheable instruction fetches, but only if the address is not claimed by the IMEM module. The
configurations supported by ICACHE, and the synchronous RAMs required for each, are summarized in
Table 24.

The instruction store for the two-way ICACHE consists of two 64-bit wide banks, with separate write-enable
controls. The tag store consists of one RAM bank with tag and valid bits for way 0, and a second RAM for
way 1 that holds the tag, valid, LRU (Least Recently Used), and lock bits. When a miss occurs in the two-way
ICACHE, the LRU bit is examined to determine which way of the set to replace, with way 0 being replaced if
LRU is 0, and way 1 being replaced if LRU is 1. The state of the LRU bit is then inverted. To optimize the
timing of cache reads, the two-way ICACHE uses the state of the LRU bit to determine which way should be

CACHE op, offset(rS) Cache Operation

Performs a data cache operation at address (rS + offset).

An address is computed as base + offset, where base is reg rS and
the offset is the 16-bit offset sign-extended to 32 bits. The address is
translated using the SMMU or the optional MMU as for a LB instruc-
tion to form a physical address. The op is a 5-bit data cache opera-
tion. If the line containing the byte with the specified physical address
is not found in the data cache, then no cache operation is performed
regardless of the value of op. Otherwise the following operation is
performed:

 10001: Inval the line is invalidated
 10101: WBInval the line is written back if dirty,

and invalidated regardless of state
 11001: WB the line is written back if dirty,

and left in the clean state.
 others: reserved

The operation is performed even if the address falls within the

address range defined for DMEM.a

If the mapped or unmapped address translation indicates that the
address of the line found in the cache is uncacheable (for example
by using a kseg1 address to access a kseg0 line) it is undefined
whether or not the operation specified by the instruction is per-
formed.

The execution of the CACHE instruction is subject the same address
exceptions as the LB instruction, and to a Coprocessor Unusable
exception under the same conditions as a coprocessor instruction
that accesses CP0.

a. Memory addresses within the DMEM range might be held in the data cache if DMEM
has been disabled with the DMEMOff bit in the CCTL register. This is possible even
when DMEM access is re-enabled with the DMEMOn bit.

Revision 1.4 Lexra Proprietary & Confidential 69

LX8380 Section 6. Local Memory

returned to the CPU. In the following cycle, the ICACHE determines if the correct way was returned. If not,
the ICACHE takes an extra cycle to return the correct element to the CPU and inverts the LRU bit.

Table 24: ICACHE Configurations

Table 25 lists the ICACHE signals that are connected to application specific RAMs. The IC_ prefix indicates
signals that are driven by the ICACHE LMI module and received by the RAMs. The ICR_ prefix indicates
signals that are driven by the ICACHE RAMs and received by the ICACHE LMI. Lexra supplies the Verilog
module that makes all required connections to these wires. The width of the index and data lines depends
upon the RAM connected to the LMI, and can be inferred from the Table 24.

Table 25: ICACHE RAM Interfaces

Configuration ICACHE_INST RAM ICACHE_TAG RAM

no instruction cache no RAM required no RAM required

1K bytes, 2-way 2 x 64 x 64 bits 16 x 24 and 16 x 26 bits

2K bytes, 2-way 2 x 128 x 64 bits 32 x 23 and 32 x 25 bits

4K bytes, 2-way 2 x 256 x 64 bits 64 x 22 and 64 x 24 bits

8K bytes, 2-way 2 x 512 x 64 bits 128 x 21 and 128 x 23 bits

16K bytes, 2-way 2 x 1,024 x 64 bits 256 x 20 and 256 x 22 bits

32K bytes, 2-way 2 x 2,048 x 64 bits 512 x 19 and 512 x 21 bits

64K bytes, 2-way 2 x 4,096 x 64 bits 1,024 x 18 and 1,024 x 20 bits

1K bytes, direct mapped 128 x 64 bits 32 x 23 bits

2K bytes, direct mapped 256 x 64 bits 64 x 22 bits

4K bytes, direct mapped 512 x 64 bits 128 x 21 bits

8K bytes, direct mapped 1,024 x 64 bits 256 x 20 bits

16K bytes, direct mapped 2,048 x 64 bits 512 x 19 bits

32K bytes, direct mapped 4,096 x 64 bits 1,024 x 18 bits

64K bytes, direct mapped 8,192 x 64 bits 2,048 x 17 bits

Signal Description

IC_TAGINDEX Tag and state RAM address (line).

ICR_TAGRD0 Tag and state RAM element 0 read path.

IC_TAGWR0 Tag and state RAM element 0 write path.

ICR_TAGRD1 Tag and state RAM element 1 read path.

IC_TAGWR1 Tag and state RAM element 1 write path.

IC_TAG0WE<N> Tag 0 RAM write enable.

IC_TAG0RE<N> Tag 0 RAM read enable.

IC_TAG0CS<N> Tag 0 RAM chip select.

70 Lexra Proprietary & Confidential Revision 1.4

Section 6. Local Memory LX8380

Note: <N> designates an available active-low version of a signal.

6.5. Instruction Memory (IMEM) LMI

The IMEM LMI supplies the interface for an optional local instruction store. The IMEM serves a fixed range
of the physical address space, determined by configuration settings inlconfig. The IMEM contents are filled
and invalidated under the control of the CP0 CCTL register, described inSection 6.2, Cache Control
Register: CCTL. The IMEM module services instruction fetches that falls within its configured range. The
IMEM is a convenient, low-cost alternative to a cache that makes instruction memory available to the core for
high-speed access.

The configurations supported by IMEM, and the synchronous RAMs required for each, are summarized in
Table 26.

Table 26: IMEM Configurations

IC_TAG1WE<N> Tag 1 RAM write enable.

IC_TAG1RE<N> Tag 1 RAM read enable.

IC_TAG1CS<N> Tag 1 RAM chip select.

IC_INSTINDEX Instruction RAM address (word).

ICR_INST0RD Instruction RAM element 0 read path.

ICR_INST1RD Instruction RAM element 1 read path.

IC_INSTWR Instruction RAM write path (to both ways).

IC_INST0WE<N>[1:0] Instruction RAM 0 write enable.

IC_INST0RE<N> Instruction RAM 0 read enable.

IC_INST0CS<N> Instruction RAM 0 chip select.

IC_INST1WE<N>[1:0] Instruction RAM 1 write enable.

IC_INST1RE<N> Instruction RAM 1 read enable.

IC_INST1CS<N> Instruction RAM 1 chip select.

Configuration IMEM_INST RAM

no local instruction RAM no RAM required

1K bytes 128 x 64 bits

2K bytes 256 x 64 bits

4K bytes 512 x 64 bits

8K bytes 1,024 x 64 bits

16K bytes 2,048 x 64 bits

32K bytes 4,096 x 64 bits

Signal Description

Revision 1.4 Lexra Proprietary & Confidential 71

LX8380 Section 6. Local Memory

Table 27 lists the IMEM signals that are connected to application specific RAMs. TheIW_ prefix indicates
signals that are driven by the IMEM LMI module and received by RAMs. TheIWR_prefix indicates signals
that are driven by RAMs and received by the IMEM LMI. TheCFG_prefix identifies configuration ports on
the IMEM LMI that are typically wired to constant values. The width of the index and data lines depends
upon the RAM connected to the LMI, and can be inferred from Table 26.

The CFG_ wires define where the IMEM is mapped into the physical address space. This configuration
information defines the local bus address region of the IMEM. It also determines the main memory locations
that are accessed by the LX8380 when an IMEM fill operation is started (by updating the IMEMFill bit of the
CP0 CCTL register). Thelconfigutility supplied by Lexra will verify that the configured address range does
not interfere with other regions defined for LX8380. The size of the memory region must be a power of two,
and must be naturally aligned.

Table 27: IMEM RAM Interfaces

Note: <N> designates an available active-low version of a signal.

6.6. Data Cache (DCACHE) LMI

The DCACHE LMI supplies the interface for a data cache attached to the LX8380 local bus. The data cache
is RTL configurable for direct mapped or two-way set associativity, and write-back or write-through
operation. The data cache participates in cacheable data reads and writes, but only if the address is not
claimed by the DMEM LMI. The configurations supported by the data cache and the synchronous RAMs
required for each are summarized in Table 28.

See Section D.4, Load/Store Rules, for detailed descriptions of pipeline stalls that the data cache may cause.

Writes that miss the cache or writes that are performed in write-through mode may require extra time to be
serviced by the LBC if its write buffer is full.

64K bytes 8,192 x 64 bits

128K bytes 16,384 x 64 bits

256K bytes 32,768 x 64 bits

Signal Description

IW_INSTINDEX IMEM index.

IWR_INSTRD Instruction read data.

IW_INSTWR Instruction write data.

IW_INSTWE<N>[1:0] Instruction RAM write enable.

IW_INSTRE<N> Instruction RAM read enable.

IW_INSTCS<N> Instruction RAM chip select.

CFG_IWBASE[31:10] Configured base address (modulo 1K bytes).

CFG_IWTOP[17:10] Configured top address (bits that may differ from base).

Configuration IMEM_INST RAM

72 Lexra Proprietary & Confidential Revision 1.4

Section 6. Local Memory LX8380

Table 28: DCACHE Configurations

Table 29 lists the DCACHE signals that are connected to application specific RAMs. The DC_ prefix
indicates signals that are driven by the DCACHE LMI module and received by the RAMs. The DCR_ prefix
indicates signals that are driven by the DCACHE RAMs and received by the DCACHE LMI. Lexra supplies
the Verilog module that makes all required connections to these wires. The width of the index and data lines
depends upon the RAM connected to the LMI, and can be inferred from Table 28.

Table 29: DCACHE RAM Interfaces

Configuration DCACHE_DATA RAM DCACHE_TAG RAM

no data cache no RAM required no RAM required

1K bytes, 2-way 2 x 64 x 64 bits 16 x 24 and 16 x 26 bits

2K bytes, 2-way 2 x 128 x 64 bits 32 x 23 and 32 x 25 bits

4K bytes, 2-way 2 x 256 x 64 bits 64 x 22 and 64 x 24 bits

8K bytes, 2-way 2 x 512 x 64 bits 128 x 21 and 128 x 23 bits

16K bytes, 2-way 2 x 1,024 x 64 bits 256 x 20 and 256 x 22 bits

32K bytes, 2-way 2 x 2,048 x 64 bits 512 x 19 and 512 x 21 bits

64K bytes, 2-way 2 x 4,096 x 64 bits 1,024 x 18 and 1,024 x 20 bits

1K bytes, direct mapped 128 x 64 bits 32 x 23 bits

2K bytes, direct mapped 256 x 64 bits 64 x 22 bits

4K bytes, direct mapped 512 x 64 bits 128 x 21 bits

8K bytes, direct mapped 1,024 x 64 bits 256 x 20 bits

16K bytes, direct mapped 2,048 x 64 bits 512 x 19 bits

32K bytes, direct mapped 4,096 x 64 bits 1,024 x 18 bits

64K bytes, direct mapped 8,192 x 64 bits 2,048 x 17 bits

Signal Description

DC_TAGINDEX Tag and state RAM address.

DCR_TAGRD Tag and state RAM read path.

DC_TAGWR Tag and state RAM write path.

DC_TAGWE<N> Tag and state RAM write enable.

DC_TAGRE<N> Tag and state RAM read enable.

DC_TAGCS<N> Tag and state RAM chip select.

DC_DATAINDEX Data RAM address (word).

DCR_DATARD Data RAM read path.

DC_DATAWR Data RAM write path.

Revision 1.4 Lexra Proprietary & Confidential 73

LX8380 Section 6. Local Memory

Note: <N> designates an available active-low version of a signal.

When configured for write-back operation, the data cache tag RAM includes a bit to indicate that a line is
dirty. Each cache line is covered by a single dirty bit which when set indicates that the processor has modified
the line in the cache but has not updated main memory. When a line is filled from system memory, the dirty
bit is cleared. If a write hits in the cache and the dirty bit is not set (a clean line), the data cache RAM is
updated with the write data and the dirty bit is set to one. If the line is already dirty when a write hits in the
cache, the data cache RAM is updated with the write data and the dirty bit remains set. Any cached write that
hits the write-back data cache updates the cache only, and does not cause any system bus activity.

When configured as a write-back cache, the data cache LMI also includes an evict buffer. In the case of a read
miss to a dirty line, the data cache first issues a line read operation to fetch the new line. If the line currently
stored in the cache is dirty, the line is copied from the data cache RAM to the evict buffer. When the current
line has been completely copied into the evict buffer, the new line is loaded into the data cache RAM. As
soon as the evict buffer is full, the data cache issues a line write operation. The processor does not stall while
the line is being written, unless the processor causes the data cache to issue another system bus operation
before the line write operation is complete.

Cache lines are only allocated on read misses, not writes. If a write misses in the cache, it will be issued as a
single write on the bus and no line will be evicted or filled. This is the same for both write-back and write-
through caches.

The replacement policy for the 2-way set-associative configuration is LRU (Least Recently Used).

Table 30 shows the data cache and system bus activity based on the current operation, the state of the line
currently stored at the cache location and the outcome of the tag compare. The table includes some unusual
cases, such as a uncached operation hitting the data cache. Such conditions are possible because the same
physical address can be accessed in both cacheable or uncacheable modes, either through a kseg0/kseg1
address alias, or through mappings that are in effect with the optional MMU. The data cache controller treats
these cases in a conservative fashion to ensure coherency between the data cache and main memory.

DC_DATAWE<N>[1:0] Data RAM write enable.

DC_DATARE<N> Data RAM read enable.

DC_DATACS<N> Data RAM chip select.

Signal Description

74 Lexra Proprietary & Confidential Revision 1.4

Section 6. Local Memory LX8380

Table 30: Data Cache Operations and Results

Operation State of Line
Currently
Stored in

Cache

Tag
Compare

Result Action

New
Cache
StateCmd

Cached/
Uncached

Write-Through/
Write-Back

Read Cached X Invalid X Issue a line fill Clean

X Clean Hit Read from cache Clean

X Clean Miss Invalidate and issue
line fill

Clean

X Dirty Hit Read from cache Dirty

X Dirty Miss Evict line and issue line
fill

Clean

Uncached X Invalid X Read from system bus Invalid

X Clean Hit Invalidate and read
from system bus

Invalid

X Clean Miss Read from system bus Clean

X Dirty Hit Evict line and read from
system bus

Invalid

X Dirty Miss Read from system bus Dirty

Write Cached X Invalid X Write to system bus Invalid

write-back Clean Hit Write to cache only Dirty

write-through Clean Hit Write to cache and
system bus

Clean

X Clean Miss Write to system bus Clean

write-back Dirty Hit Write to cache only Dirty

write-through Dirty Hit Write to cache and
system bus

Dirty

X Dirty Miss Write to system bus Dirty

Uncached X Invalid X Write to system bus Invalid

X Clean Hit Invalidate and write to
system bus

Invalid

X Clean Miss Write to system bus Clean

X Dirty Hit Evict line and write to
system bus

Invalid

X Dirty Miss Write to system bus Dirty

X = don’t care

Revision 1.4 Lexra Proprietary & Confidential 75

LX8380 Section 6. Local Memory

6.7. Scratch Pad Data Memory (DMEM) LMI

The DMEM LMI supplies the interface for a scratch pad data RAM attached to the LX8380 local bus. The
DMEM module services any cacheable or uncacheable data read or write operation that falls within its
configured range.

DMEM can perform reads or writes that hit DMEM at the rate of one per cycle. See Section D.4, Load/Store
Rules, for detailed descriptions of pipeline stall conditions that may be caused by DMEM.

Because a write operation to the DMEM is never sent to the system bus, writes to DMEM will not cause
processor stalls because of pending system bus activity.

LX8380 applications may optionally specify the use of a 128-bit data memory width through anlconfig
setting. When RAM BIST or scan collars are enabled withlconfig, LX8380 doesnot tie the DMEM RAM
into the RAM BIST paths or scan collar muxes. Other RAMs remain connected to these options.

The DMEM configurations and the synchronous RAMs required for each are summarized in the Table 31.

For LX8000, dual-port RAM may optionally be used for DMEM. The second port is brought out the
processor hierarchy for customer connection.

Table 31: DMEM Configurations

Table 32 lists the DMEM signals that are connected to application specific RAMs. TheDW_prefix indicates
signals that are driven by the DMEM LMI module and received by RAMs. TheDWR_prefix indicates
signals that are driven by RAMs and received by the DMEM LMI. TheCFG_prefix identifies configuration
ports on the DMEM LMI that are typically wired to constant values. The width of the index and data lines
depends upon the RAM connected to the LMI, and can be inferred from Table 31.

TheCFG_wires define where DMEM is mapped into the physical address space. It is not possible for any
DMEM reference to result in an operation on the system bus. Thelconfigutility supplied by Lexra will verify
that the configured address range does not interfere with other regions defined for LX8380. The size of the
memory region must be a power of two, and must be naturally aligned.

Configuration DMEM_DATA RAM (64-bit) DMEM_DATA RAM (128-bit)

no local data memory no RAM required no RAM required

1K bytes dual port 128 x 64 bits dual port 64 x 128 bits

2K bytes dual port 256 x 64 bits dual port 128 x 128 bits

4K bytes dual port 512 x 64 bits dual port 256 x 128 bits

8K bytes dual port 1,024 x 64 bits dual port 512 x 128 bits

16K bytes dual port 2,048 x 64 bits dual port 1,024 x 128 bits

32K bytes dual port 4,096 x 64 bits dual port 2,048 x 128 bits

64K bytes dual port 8,192 x 64 bits dual port 4,096 x 128 bits

128K bytes dual port 16,384 x 64 bits dual port 8,192 x 128 bits

256K bytes dual port 32,768 x 64 bits dual port 16,384 x 128 bits

76 Lexra Proprietary & Confidential Revision 1.4

Section 6. Local Memory LX8380

Table 32: DMEM RAM Interfaces

Note: <N> designates an available active-low version of a signal.

Signal Description

DW_DATAINDEX Decoded data RAM index.

DWR_DATARD Data RAM read data.

DW_DATAWR Data RAM write data.

DW_DATAWE<N> Data RAM write enable.

DW_DATARE<N> Data RAM read enable

DW_DATACS<N> Data RAM chip select

CFG_DWBASE[31:10] Configured base address (modulo 1K bytes).

CFG_DWTOP[17:10] Configured top address (bits that may differ from base).

DMADW_RCLK Data RAM dual port DMA clock (optional).

DMADW_DATAINDEX Decoded data RAM index.

DMADW_DATARD Data RAM dual port DMA read data.

DMADW_DATAWR Data RAM dual port DMA write data.

DMADW_DATAWE<N> Data RAM dual port DMA write enable.

DMADW_DATARE<N> Data RAM dual port DMA read enable.

DMADW_DATACS<N> Data RAM dual port DMA chip select.

Revision 1.4 Lexra Proprietary & Confidential 77

LX8380 Section 7. CBUS Interface

7. CBUS Interface

This section describes the CBUS, a system interface to the LX8380 that is an alternative to the LBUS. The
CBUS Interface (CBI) provides a simple signalling layer between the LX8380 processor's cache controllers
and the optional LX8380 system bus interface, the LBC. (See Section 8 for information on the LBC and
LBUS.) LX8380 applications that connect to a bus protocol other than LBUS may eliminate the LBC and
provide their own system bus interfaces or devices that connect directly to the LX8380 using CBUS.

7.1. System Interface Configuration

Figure 10 illustrates the LX8380’s organization for the different system interface configurations. This section
describes the configuration shown is part (b) of the figure.

Figure 10: LX8380 System Interface Configurations

LBUS
CBUS_Y* LBC

ICache

DCache

EJTAG

(a) LX8380 Configured with LBUS Interface

CBUS_Y*
CBUS

Interface
(CBI)

(b) LX8380 Configured with CBUS Interface

LX8380 processor application logic

LX8380 processor application logic

CBUS
Interface

(CBI)

BMC

ICache

DCache

EJTAG

BMC

78 Lexra Proprietary & Confidential Revision 1.4

Section 7. CBUS Interface LX8380

7.2. CBUS Interface Write Buffer and Out-of-Order Processing

The CBUS Interface contains a write buffer with a depth that is configurable withlconfig. All write requests
and split read requests from the CPU are posted in the write buffer. The CPU will not wait for the write to
complete. Write operations complete in the order they are entered into the buffer. If the buffer is full and the
data cache generates another write operation to the CBUS Interface, then the CPU is stalled until an entry
becomes available. LX8380 applications that employ LBUS instead of CBUS still use the CBI write buffer.

When the CPU issues a (non-split) read operation, the CBI will attempt to forward that request to the Lexra
Bus ahead of any pending write operations. This significantly improves performance since the CPU must
wait for the read operation to complete.

There are a few cases when the CBI will not allow the read operation to pass pending writes:

1. The address of a pending write is within the same cache line as a data cache or BMC read. The
CBI will hold the read operation until the matching write operation, and all write operations
ahead of it, complete. If the read is for an instruction fetch, it can still pass a pending write that
is inside the same cache line.

2. A data cache or BMC read is to uncacheable address space. All writes complete before the read
is issued. This avoids any problems with I/O devices and their associated control/status regis-
ters.

3. A pending write is to uncachable address space. The CBI holds the read operation until all
writes up to and including the write to uncacheable address space complete. This further avoids
I/O device problems.

The write buffer bypass feature can be disabled vialconfig so that reads never pass writes.

7.3. CBUS Line Read Interleave Order

The line read operation reads a sequence of data beats from memory corresponding to the size of a cache line.
The cache line size affects how many cycles are required to transfer the entire line. The LX8380 supports a
configurable line size, specified throughlconfig. A line size of eight words (32 bytes) is assumed here.

The CBUS target may transfer the read data starting withword zero first, or starting with thedesired word
first. With word zero first operation, the target transfers four 64-bit beats of data in sequence, starting at the
nearest 32-byte-aligned address smaller or equal to the address that the initiator drives. In other words, the
target starts the transfer at the beginning of the line containing the requested address. With desired word first
operation, the first data beat returned by the target is the beat corresponding to the address instead of the word
zero of the line. The second beat is the next sequential data beat, and so on. At the end of the line, the target
wraps around and returns the first beat of line. All devices attached to the CBUS must consistently return
word zero first or the desired word first. The LX8380 is configurable to work with either mode.

The LX8380 supports two ways of incrementing the address of a line fill. One is bylinear wrap, where the
address is simply incremented by one. The other is byinterleaved wrap, where the next address is determined
by the logical xor of the cycle count and the first word address. The interleave sequence is shown in Table 33.
The low-order address bits 4:3 for the first data beat are the obtained from the address of the line read request.
The low-order address bits for the subsequent data indicate the corresponding interleave order. All devices
attached to the CBUS must consistently support linear wrap or interleaved wrap. The LX8380 is configurable
to work with either mode.

Revision 1.4 Lexra Proprietary & Confidential 79

LX8380 Section 7. CBUS Interface

Table 33: Line Read Interleave Order

7.4. CBUS Byte Alignment

CBUS data must be driven to the byte lanes according to the rules shown in Table 34. Alignments not shown
are not generated by the CPU. All multi-beat operations transfer multiple twin word beats over CBUS.

Table 34: CBUS Byte Lane Assignment

Interleaved Address[4:3]

1st data beat 00 01 10 11

2nd data beat 01 00 11 10

3rd data beat 10 11 00 01

4th data beat 11 10 01 00

CBUS Bus data byte lanes used

Transfer
Size

ADDR[2:0] 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

byte 000 X

byte 001 X

byte 010 X

byte 011 X

byte 100 X

byte 101 X

byte 110 X

byte 111 X

half word 000 X X

half word 010 X X

half word 100 X X

half word 110 X X

word 000 X X X X

word 100 X X X X

twin word 000 X X X X X X X X

80 Lexra Proprietary & Confidential Revision 1.4

Section 7. CBUS Interface LX8380

7.5. CBUS Interface Signal List

Table 35 summarizes the LX8380’s CBUS signals.

Table 35: CBUS Signal List

Name I/O Function

CBUS_YREQO O 0 - no request, 1 - processor is initiating a request

CBUS_YADDRO[31:0] O Address

CBUS_YREADO O 1=Read, 0=Write

CBUS_YSZO[3:0] O Transfer size
 4’b1000 - 1 byte
 4’b1001 - 2 bytes
 4’b1011 - 1 word
 4’b1100 - 2 words
 4’b0000 - 4 words
This signal is don’t care when CBUS_YLINEO is asserted.

CBUS_YLINEO O 1 - line access, 0 - single access

CBUS_YDATAO[63:0] O Write Data

CBUS_YSPLTO O 1=Split 0=normal transaction

CBUS_YLTIDO[3:0] O Local thread ID

CBUS_YUCO O 1 - uncached access, 0 - cached access

CBUS_YSRCO[3:0] O transaction source (within LX8380):
 4’b0001 Instruction Cache
 4’b0010 Data Cache or EJTAG DMA write
 4’b0100 EJTAG DMA read
 4’b1000 BMC

CBUS_YDBUSYO O 1 - LX8380 is not ready to receive Data. Any return with
CBUS_YVALTYPEI of Data (4’b0010) is ignored by the LX8380.
External logic must hold such data until CBUS_YDBUSYO is
deasserted.

0 - LX8380 is ready to receive Data.

CBUS_YBUSYI I 1 - External logic cannot accept request. The current CBUS_Y
request, if any, is ignored by external logic.

0 - External logic is ready to accept a request.

CBUS_YDATAI[63:0] I Read Data

CBUS_YLTIDI[3:0] I Thread associated with Read Data

Revision 1.4 Lexra Proprietary & Confidential 81

LX8380 Section 7. CBUS Interface

7.6. CBUS Transaction Types

The following transaction types are supported by the CBUS interface:

1. Single split/normal read.

2. Line split/normal read.

3. Single write with split read.

4. Single write.

5. Line writes.

7.7. CBUS Protocol

The transaction request protocol is controlled with CBUS_YREQO output and CBUS_YBUSYI input.

1. The CBUS_YREQO output is asserted by the LX8380 to initiate an access to external logic.
Additional CBUS_Y* outputs are driven by the LX8380 to provide the transaction details.

2. CBUS_YREQO remains asserted until the CBUS_YBUSYI is not asserted by external logic.

For a write transaction, the transaction is completed after step 2. For a read transaction, additional steps
control the return of read data by the external logic, using the CBUS_YVALTYPEI[3:0] input and the
CBUS_YDBUSYO output.

1. If CBUS_YVALTYPEI indicates Instruction Cache, BMC or EJTAG DMA data is present on
CBUS_YDATAI, the data is always accepted by the LX8380.

2. If CBUS_YVALTYPEI indicates that Data Cache data is present on CBUS_YDATAI and
CBUS_YDBUSYO is asserted, the external logic must continue to drive CBUS_YVALTYPEI
and CBUS_YDATAI until CBUS_YDBUSYO deasserts.

7.8. CBUS Transaction Timing Diagrams

Note: All of the following timing diagrams assume a line size of 8 words. For reads, the transaction request is
shown in a different timing diagram than the returning read data as there is no protocol link between the two.

CBUS_YVALTYPEI[3:0] I Indicates valid read data of a certain type:
 4’b0000 No valid read data
 4’b0001 Instruction Cache
 4’b0010 Data Cache
 4’b0100 EJTAG DMA
 4’b1000 BMC

CBUS_YSPLTSZI[2:0] I Size of split Read Data beat:
 3’b000 - 1 byte
 3’b001 - 2 bytes
 3’b011 - 1 word
 3’b100 - 2 words

CBUS_YIDLEI I Indicates external CBUS_Y device is in an idle state, i.e. has no
pending read or write transactions.

Name I/O Function

82 Lexra Proprietary & Confidential Revision 1.4

Section 7. CBUS Interface LX8380

7.8.1. Back-to-Back Single Writes with Busy

In cycle 1 the write to address A is accepted by the external logic. In cycle 2 the external logic asserts
CBUS_YBUSYI which causes the LX8380 to hold its request. In cycle 3, the external logic de-asserts
CBUS_YBUSYI and accepts the request.

In this example, cycle 4 could be used by the processor to initiate another request.

Figure 11: CBUS Back-to-Back Single Writes with Busy

7.8.2. Line Writes

During a line write the address is given in cycle 1. External logic signals that it is able to accept a line write
request by de-asserting CBUS_YBUSYI. External logic does not honor a line write request when
CBUS_YBUSYI is asserted.

CLK

CBUS_YREQO

CBUS_YBUSYI

CBUS_YADDRO[31:0]

CBUS_YDATAO[63:0]

CBUS_YSRCO[3:0]

CBUS_YLINEO

CBUS_YSZO[3:0]

CBUS_YREADO

CBUS_YSPLTO

CBUS_YLTIDO[3:0]

CBUS_YUCO

A B

A B

A B

A B

D0063

1 2 3 4

CLK

CBUS_YREQO

CBUS_YBUSYI

CBUS_YADDRO[31:0]

CBUS_YDATAO[63:0]

CBUS_YSRCO[3:0]

CBUS_YLINEO

CBUS_YSZO[3:0]

CBUS_YREADO

CBUS_YSPLTO

CBUS_YLTIDO[3:0]

CBUS_YUCO

A

A1 A2 A3 A4

A

D0064

1 2 3 4 5

Revision 1.4 Lexra Proprietary & Confidential 83

LX8380 Section 7. CBUS Interface

Figure 12: CBUS Line Write

7.8.3. Back-to-Back Single Read Requests with Busy

Only the read request is shown here. The return data is not shown.

Figure 13: CBUS Back-to-Back Single Read Requests with Busy

7.8.4. Line Read Request

A line read request takes only one cycle with the data being returned later by the external logic.

Figure 14: CBUS Line Read Request

CLK

CBUS_YREQO

CBUS_YBUSYI

CBUS_YADDRO[31:0]

CBUS_YDATAO[63:0]

CBUS_YSRCO[3:0]

CBUS_YLINEO

CBUS_YSZO[3:0]

CBUS_YREADO

CBUS_YSPLTO

CBUS_YLTIDO[3:0]

CBUS_YUCO

A B

A B

A B

D0065

1 2 3 4

CLK

CBUS_YREQO

CBUS_YBUSYI

CBUS_YADDRO[31:0]

CBUS_YDATAO[63:0]

CBUS_YSRCO[3:0]

CBUS_YLINEO

CBUS_YSZO[3:0]

CBUS_YREADO

CBUS_YSPLTO

CBUS_YLTIDO[3:0]

CBUS_YUCO

A

A

D0066

1 2

84 Lexra Proprietary & Confidential Revision 1.4

Section 7. CBUS Interface LX8380

7.8.5. Split Read Request

The LX8380 always issues a split data read request when an LW.CSW or LT.CSW or LQ.CSW instruction is
executed, and may also be configured vialconfig to issue split reads for all read operations. The LX8380 may
initiate a new transaction in the following cycle. The processor may have multiple split transaction reads
outstanding, as defined in Table 36.

Table 36: Maximum Number of Outstanding Split Reads

To initiate a split read transaction, the processor asserts CBUS_YSPLTO, CBUS_YREQO and
CBUS_YREADO. This can occur for word, twinword, quadword and line reads. The CBUS_YLTIDO[3:0]
output indicates the processor context number or BMC channel number associated with the request. The
device that services the split read request is responsible for retaining the context number while it performs the
read operation, and re-sourcing the context number when the read data is finally returned.

Figure 15: CBUS Split Read Requests

7.8.6. Write with Split Read Request

The processor issues a write with split data read request when a Write Descriptor with Split Load instruction
(WDLW.CSW, WDLT.CSW or WDLQ.CSW) is executed. This transaction supplies the write data and
initiates the read request in a single cycle. The processor may initiate a new transaction in the following cycle.
The limitations on outstanding split Data reads, defined in Table 36, apply to the outstanding read
transactions that are generated in this way.

Split Read Source CBUS_YSRCO[3:0] Maximum Reads Outstanding

Instruction 4’b0001 One

Data read 4’b0010 One per processor context

EJTAG DMA read 4’b0100 One

BMC read 4’b1000 Limited only by the assertion of the
CBUS_YBUSYI input.

CLK

CBUS_YREQO

CBUS_YBUSYI

CBUS_YADDRO[31:0]

CBUS_YDATAO[63:0]

CBUS_YSRCO[3:0]

CBUS_YLINEO

CBUS_YSZO[3:0]

CBUS_YREADO

CBUS_YSPLTO

CBUS_YLTIDO[3:0]

CBUS_YUCO

A B

A B

A

A B

D0121

1 2

Revision 1.4 Lexra Proprietary & Confidential 85

LX8380 Section 7. CBUS Interface

To initiate a write with split read transaction, the processor asserts CBUS_YSPLTO and CBUS_YREQO,
and de-asserts CBUS_YREADO. This can only occur for word, twinword and quadword reads. The
CBUS_YSZO[3:0] output indicates the size of the read request. The write data size is always a twinword.
The CBUS_YLTIDO[3:0] output indicates the processor context number or BMC channel number
associated with the request. The device that services the split read request is responsible for retaining the
context number while it performs the read operation, and re-sourcing the context number when the read data
is finally returned.

Figure 16: CBUS Write with Split Read Request

7.8.7. Returning Read Data

External logic supplies read data on the CBUS_YDATAI and CBUS_YLTIDI inputs while asserting a bit
within CBUS_YVALTYPEI. If CBUS_YVALTYPEI indicates Data (4’b0010), the LX8380 only accepts the
read data if it has de-asserted CBUS_YDBUSYO. If CBUS_YDBUSYO is asserted, the external logic must
maintain CBUS_YVALTYPEI and CBUS_YDATAI until CBUS_YDBUSYO is deasserted

If the read data is in response to a split read request, the external logic must also drive CBUS_YSPLTSZI to
indicate the size of the data beat.

Figure 17: CBUS Read Data and DBUSY

A read line data return is illustrated below. The external device asserts the appropriate bit of
CBUS_YVALTYPEI for each data beat. Assertion of CBUS_YDBUSYO is also illustrated.

CLK

CBUS_YREQO

CBUS_YBUSYI

CBUS_YADDRO[31:0]

CBUS_YDATAO[63:0]

CBUS_YSRCO[3:0]

CBUS_YLINEO

CBUS_YSZO[3:0]

CBUS_YREADO

CBUS_YSPLTO

CBUS_YLTIDO[3:0]

CBUS_YUCO

A

A

A

A

A

D0122

1

CLK

CBUS_YDBUSYO

CBUS_YVALTYPEI[3:0]

CBUS_YDATAI[63:0]

CBUS_YLTIDI[3:0]

CBUS_YSPLTSZI[2:0]

(0000)(0000) A (0100) B (0100) C (0010) (0000)

A B C

A B C

A B C

D0123

1 2 3 4 5 6

86 Lexra Proprietary & Confidential Revision 1.4

Section 7. CBUS Interface LX8380

If the line read data is in response to a split read request then each data beat is a twinword, and the external
logic must therefore drive CBUS_YSPLTSZI to 3’b100.

Figure 18: Read Data for a Line Read Request

7.8.8. Latency of CBUS Transactions

Figure 19 illustrates how the latency of a CBUS read transaction affects the duration of CPU stalls while the
CPU waits for the read data to be returned. (But note, the CPU is typically not stalled during split read
transactions that are issued as a result of the L*.CSW or WDL*.CSW instructions.)

Figure 19: Latency of CBUS Transactions.

The overall latency encountered for any CBUS transaction depends more on system level behavior, and less
on the behavior of the CBUS interface itself. In this example, the CBUS interface is synchronously connected
to a full-speed LBUS via an LBC, and the LBC is assumed to be parked on the LBUS. Thus, the read
transaction appears on LBUS one cycle after the CBUS request is initiated. Some number of cycles will pass
as the addressed LBUS target prepares its data response. The LBUS target then supplies the data beats
coincident with the assertion of TRDY. The LBC requires only one cycle to pass the first data beat from the
LBUS to the CBUS, at which time CBUS_YVALTYPE contains the code 5’b00010 to indicate the data
response. The CBUS interface in turn requires only one cycle to pass the data to the CPU and release the stall
condition.

From this example, it is seen that only three stall cycles can be attributed to the CBUS interface. If a
synchronous full-speed LBUS is employed for the system bus, the LBC and LBUS protocol will result in a
minimum of three additional stalls. The addressed LBUS target may also insert additional stalls.

CLK

CBUS_YDBUSYO

CBUS_YVALTYPEI[3:0]

CBUS_YDATAI[63:0]

CBUS_YLTIDI[3:0]

CBUS_YSPLTSZI[2:0]

(0000)(0000) A (0010) (0000)

A0 A1 A2 A3

A

3'b100
D0124

1 2 3 4 5 6

CLK

STALL

CBUS_YREQO

LBUS_FRAME

LBUS_TRDY

CBUS_YVALTYPEI[3:0] 4'b00004'b0000 4'b0010 4'b0000D0081

Revision 1.4 Lexra Proprietary & Confidential 87

LX8380 Section 8. Lexra System Bus (LBUS)

8. Lexra System Bus (LBUS)

This section describes the optional Lexra System Bus (LBUS) and the Lexra Bus Controller (LBC) that
connects the LX8380 to LBUS. The LBUS provides a flexible PCI-like protocol appropriate for systems with
multiple masters and targets. Applications which do not require a such a system bus, or which include custom
interfaces to other system buses, may optionally employ the LX8380’s CBUS interface rather than the LBUS.
(See Section 7, CBUS Interface.)

8.1. Connecting the LX8380 to Internal Devices

The Lexra Bus Controller (LBC) provides the connection between the LX8380 CBUS Interface (CBI) and
the Lexra System Bus (LBUS). The LBUS supports application-specific system bus devices such as main
memory, USB or IEEE-1394 (Firewire). The LBC uses a protocol similar to that of the Peripheral
Component Interface (PCI) bus. This is a well-known and proven architecture. Adding new devices to the
Lexra Bus is straightforward and the performance approaches the highest that can be achieved without
adding a great deal of complexity to the protocol.

Figure 20: Lexra System Bus (LBUS) Diagram

The Lexra bus supports multiple masters. This allows for mastering I/O controllers with DMA engines to be
connected to the bus. The bus has a pended architecture, in which a master holds the bus until all the data is
transferred. This simplifies the design of user-supplied bus agents and reduces latency for cache miss
servicing.

The Lexra bus is a synchronous bus. Signals are registered and sampled at the positive edge of the bus clock.
Certain logical operations may be made to the sampled signals and then new signals can be driven
immediately, such as for address decoding. This allows same-cycle turn-around. The LBC supports
synchronous modes with the LBUS operating at full CPU speed or half CPU speed, and an asynchronous
mode that allows the LBUS to be clocked at any speed independent of the CPU speed.

The Lexra bus data path for the LX8380 is 64 bits wide. Therefore, the bus can transfer two words, one word,
a halfword, or a byte in one bus clock. The bus supports line and burst transfers in which several beats (64
bits) of data are transferred. The Lexra bus accomplishes this by transferring data beats in successive clock

Lexra
Bus

Controller
(LBC)

Bus
Bridge

USBFireWire

LBUS

External Bus
(e.g. PCI)CBUS

Interface
(CBI)

Buses to
LMIs CBUS

memory

application-specific modulesLX8380 modules

88 Lexra Proprietary & Confidential Revision 1.4

Section 8. Lexra System Bus (LBUS) LX8380

cycles.

The LBC provides enabling signals to control application-specific muxes or tristate buffers. This allows the
LBUS to have either a bi-directional or point-to-point topology.

8.2. Terminology

The Lexra bus borrows terminology from the PCI bus specification, on which the Lexra bus is partially based.

Bus transactions take place between two busagents. One bus agent requests the bus and initiates a transfer.
The second responds to the transfer.

The agent initiating a transfer is called thebus initiator. It is also referred to as thebus master. Both terms are
used interchangeably in this document.

The responding agent is known as the bustarget. It samples the address when it is valid, and determines if the
address is within the domain of the device. If so, it indicates such to the initiator and becomes the target.

A read transfer is a bus operation whereby the master requests data from the target.

A write transfer is a bus operation whereby the master requests to send data to the target.

A single databus operation is used to transfer two words, one word, a halfword, or a byte of data. The data
can be transferred in one bus cycle, not including the address cycle and device latencies.

A line transferis a read or write operation where an entire cache line of data is transferred in successive
cycles as fast as the initiator and target can send/receive the data.

A burst transferis a read or write operation where a large amount of data needs to be sent. The initiator
presents a starting address and data is transferred starting at that address in successive cycles; for each word
transferred, the address is incremented by the devices internally.

A beat is the data (up to 64 bits) that is transferred in one data cycle.

A word is 32 bits of data.

A deviceasserts a signal when it drives it to its logical true electrical state.

8.3. Bus Operations

The purpose of the Lexra bus is to connect together the various components of the system, including the
LX8380 CPU, main system memory, I/O devices, and external bus bridges. Different devices have different
transfer requirements. For example, the LX8380 CPU will request the bus to fetch a cache line of data from
memory. I/O devices will request large blocks of data to be sent to and from memory. LBUS supports the
various types of transfers needed by both I/O and the processor.

Single Data Read
Line Read
Burst Read
Single Data Write
Line Write
Burst Write
Split Read
Write Split Read
Split Data

Revision 1.4 Lexra Proprietary & Confidential 89

LX8380 Section 8. Lexra System Bus (LBUS)

8.3.1. Single Data Read

The single data read operation reads a twinword, single word, halfword, or byte from the target device. This
operation is usually used by the CPU to read data from uncachable address space. (If the read address was in
cacheable address space, either a hit would occur resulting in no bus activity, or a miss would occur resulting
in a read line transaction.)

8.3.2. Line Read

The line read operation reads a sequence of data beats from memory corresponding to the size of a cache line.
The cache line size affects how many cycles are required to transfer the entire line. The LX8380 supports a
configurable line size, specified throughlconfig. A line size of eight words (32 bytes) is assumed here.

The target may transfer the read data starting withword zero first, or starting with thedesired word first. With
word zero first operation, the target transfers four 64-bit beats of data in sequence, starting at the nearest 32-
bit aligned address smaller or equal to the address that the initiator drives. In other words, the target starts the
transfer at the beginning of the line containing the requested address. With desired word first operation, the
first data beat returned by the target is the beat corresponding to the address instead of the word zero of the
line. The second beat is the next sequential data beat, and so on. At the end of the line, the target wraps around
and returns the first beat of line. All devices on the system bus must operate consistently with respect to
whether they return word zero first or the desired word first. The LX8380 is configurable to work with either
mode of operation.

The LX8380 supports two ways of incrementing the address of a line read. One islinear wrap, where the
address is simply incremented by one. The other isinterleaved wrap, where the next address is determined by
the logical xor of the cycle count and the first word address. The interleave sequence is shown in the table
below. The low-order address bits 4:3 for the first data beat are the obtained from the address of the line read
request. The low order address bits for the subsequent data indicate the corresponding interleave order. The
address increment mode used for a line read operation is specified in the bus command, as described in
Section 8.5. The LX8380 is configurable vialconfig to generate bus commands for either mode.

Table 37: Line Read Interleave Order

8.3.3. Burst Read

The burst read operation transfers an arbitrary amount of data from the target to the initiator. The initiator first
presents a starting address to the target. The target responds by providing multiple cycles of data beats in
sequence, starting at the initial address. The initiator indicates to the target when to stop providing data.

Burst read operations are used by I/O devices for block DMA transfers. The LX8380 does not issue burst
read operations.

Note that there is a difference between an 8-cycle burst and a line read. A line read may use a desired-word-
first increment and wrap. A burst will always increment and will never wrap.

Interleaved Address[4:3]

1st data beat 00 01 10 11

2nd data beat 01 00 11 10

3rd data beat 10 11 00 01

4th data beat 11 10 01 00

90 Lexra Proprietary & Confidential Revision 1.4

Section 8. Lexra System Bus (LBUS) LX8380

8.3.4. Single Data Write

The single data write operation writes a twinword, a single word, a halfword, or a byte to the target.

The LX8380 data cache is configurable for write-through or write-back policies. CPU data writes that are
performed in write-through mode generate a single data write operation on the system bus. CPU data writes
that miss the data cache, even in write-back mode, also generate a single cycle write operation. However, the
data cache inhibits these bus write operations if the address falls within the CPU’s local DMEM.

8.3.5. Line Write

The line write operation write a sequence of data from memory corresponding to the size of a cache line. The
cache line size affects how many cycles are required to transfer the full line. The LX8380 and the Lexra bus
support a configurable line size, specified throughlconfig. A line size of eight words (32 bytes) is assumed
here. Line writes always begin with word zero as the first data beat.

8.3.6. Burst Write

A burst write is an operation where the initiator sends an address and then an indefinite sequence of data to
the target. The initiator will inform the target when it has finished sending data. This operation is used by I/O
devices for DMA transfers. It is not used by the LX8380.

8.3.7. Split Read

The LBC issues a Split Read command when the processor executes an LW.CSW, LT.CSW or LQ.CSW
instructions. If the LX8380 is configured for split line reads (vialconfig), the processor issues a Split Read
command for all data and instruction read transactions, including line reads.

The Split Read bus transaction terminates when the target has accepted the command by asserting TRDY.
The bus is free for other operations while the target device performs the read internally. When the target is
ready to supply the read data, it issues a Split Data or Split Line Data command as a bus master, described
below.

8.3.8. Write Split Read

The LBC can issue a Write Split Read command when the processor executes a WDLW.CSW, WDLT.CSW
or WDLQ.CSW instruction. This bus command writes 64-bit data to a device while simultaneously making a
split read request. CMD[3:0] specify the size of the read request, one, two or four words. The Write Split
Read bus transaction terminates when the target device has accepted the command and the write data by
asserting TRDY. The bus is free for other operations while the device performs the write and read operations
internally. When the target device is ready to supply the read data, it issues a Split Data command as a bus
master, described below.

8.3.9. Split Data

A target device that has accepted a Split Read or Write Split Read command supplies the data to the requestor
using the Split Data command. The device saves the GTID obtained from the Split Read or Write Split Read
command, and performs the read operation internally. When the device is ready to supply the read data, the
device acts as an LBUS master device. It issues a Split Data command that identifies the original requestor’s
GTID, and supplies the read data with the command. The LBC that matches the GTID will act as LBUS
target device and accept the data. An LBC acts as a target only for Split Data commands.

Revision 1.4 Lexra Proprietary & Confidential 91

LX8380 Section 8. Lexra System Bus (LBUS)

8.4. Signal Descriptions

Table 38: LBUS Signal Description

Signal Name
Source
(Initiator/Target/Ctrl)

Description

BCLOCK Ctrl Bus Clock

BCMD[8:0] Initiator Encoded command. Active during first cycle that
BFRAME is asserted.

BADDR[31:0] Initiator Address; Target indicates valid address by asserting
BFRAME.

BFRAME Initiator Asserted by initiator at beginning of operation with
address and command signals; de-asserted when
initiator is ready to accept or send last piece of data.
Other bus masters sample this and BIRDY to indicate
that the bus will be available on the next cycle.

BIRDY Initiator For writes, indicates that initiator is driving valid data;
on reads, indicates that initiator is ready to accept
data.

BDATA[63:0] Initiator on write/Target on
read

Data; if driven by initiator, BIRDY indicates valid data
on bus; if driven by target, BTRDY indicates valid data
on bus.

BTRDY Target For writes, indicates that target is ready to accept
data; on reads, indicates that target is driving valid
data.

BSEL Target Asserted by selected target after initiator asserts
BFRAME; indicates that target has decoded address
and will respond to the transaction (i.e. has been
selected).

BGTID[15:0] Initiator For all transactions except Split Data, indicates the
Global Thread ID of the initiator. For Split Data trans-
actions, indicates the Global Thread ID of the target
to which the data is directed.

92 Lexra Proprietary & Confidential Revision 1.4

Section 8. Lexra System Bus (LBUS) LX8380

8.5. LBUS Commands

The initiator drives BCMD during the cycle that BFRAME is asserted. The encoding for BCMD is shown
below.

BCMD[8:6] 000 read
001 write
010 split read
011 write split read
100 reserved
101 split data
110 reserved
111 reserved

BCMD[6] 0 read
1 write

BCMD[5:4]a

a. If the processor is not configured to issue Split Read commands for all read
operations,CMD[5:4] is always 00 for Split Read, Write Split Read and
Split Data commands.

00 burst, fixed lengthb

b. For burst transfers, the length is determined BCMD[3:0]

01 burst, unlimited number of words
10 line, interleaved wrapc

c. For line transfers the length is determined by the RTL line size configura-
tion (set withlconfig), not BCMD[3:0]

11 line, linear wrap

BCMD[3:0] 1000 1 byte
1001 2 bytes
1010 reserved
1011 1 word
1100 2 words
1101 reserved
111x reserved
0000 4 words
0001 8 words
0010 16 words
0011 32 words
01xx reserved

Revision 1.4 Lexra Proprietary & Confidential 93

LX8380 Section 8. Lexra System Bus (LBUS)

8.6. LBUS Byte Alignment

LBUS data must be driven to the byte lanes according to the rules shown in Table 39. Alignments not shown
are not legal. All multi-beat operations transfer multiple twin word beats over LBUS.

Table 39: LBUS Byte Lane Assignment

The Lexra Bus does not define unaligned data transfers, such as a halfword transfer that starts at
ADDR[1:0]=01, or transfers that would need to wrap to the next data beat.

8.7. Split Transactions

The processor generates a Split Read command as a result of executing specific instructions such as
LW.CSW. These instructions also cause the processor to perform a context switch. The split transaction
makes efficient use of the system bus while the processor executes instructions for a different context. The
LX8380 can also be configured withlconfig to issue Split Read commands for all read operations, including
line reads that are initiated as a result of an instruction cache or data cache miss. Although the processor does
not perform a context switch in these cases, the split transaction can still improve system level performance
by making more efficient use of the system bus.

The split transactions are divided into two parts. The first half, initiated by an LBC, requests data from a
target device (either with a Split Read or Write Split Read command). Unlike a regular read request, the LBC
does not hold the bus until the read data is returned. Once the LBC knows that the target has received the split
read request, it releases the bus and waits for the data to be returned at a later time. The data is returned to the
LBC with a Split Data command from the LBUS device that accepted the split read request.

When the processor executes a LW.CSW, LT.CSW or LQ.CSW instruction, a Split Read command for one,

Lexra Bus data byte lanes used

BCMD[3:0] ADDR[2:0] 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

1000 000 X

1000 001 X

1000 010 X

1000 011 X

1000 100 X

1000 101 X

1000 110 X

1000 111 X

1001 000 X X

1001 010 X X

1001 100 X X

1001 110 X X

1011 000 X X X X

1011 100 X X X X

1100 100 X X X X X X X X

94 Lexra Proprietary & Confidential Revision 1.4

Section 8. Lexra System Bus (LBUS) LX8380

two or four words will be issued on the LBUS. CMD[3:0] is used to indicate the size of the read data
requested. No data will be transferred with the request. When the processor executes a WDLW.CSW,
WDLT.CSW or WDLQ.CSW instruction, one LBUS transaction (Write Split Read command) will issue the
write data and a split read request. Unlike a regular write, the size of the write data is always two words.
CMD[3:0] indicates the size of the requested read data.

If the processor is configured to issue Split Read commands for all read operations, an instruction or data
cache miss will cause the processor to issue a Split Read command that specifies a line transfer, via
CMD[5:4]. The line size is configuration dependent, and is not conveyed in CMD[3:0].

Once an LBUS target device has accepted the split read request, it must return data at a later time. The target
acts as an LBUS master device and initiates a Split Data command. The target LBC accepts this command
and receives the data.

The Global Thread ID (GTID) is driven with each split read request. The target device retains the GTID value
associated with the split read request, and supplies this value when it initiates the split data transaction to
return the data. This allows an LBC to identify split read data that is targeted for it, and allows the processor
associate the data with the correct context. A target system bus device must save all 16 bits of the GTID value
driven with a split read request, including Reserved fields, and subsequently drive the 16-bit value onto GTID
during the split read data transaction.

Table 40: LBUS GTID Fields

The LBC drives GTID all transactions, including non-split transaction types.

8.8. Lexra Bus Controller

The Lexra Bus Controller (LBC) is the element of the LX8380 that connects to the Lexra Bus. It forwards all
transaction requests from the LX8380 CPU to the Lexra Bus.

GTID[15] GTID[14:13] GTID[12] GTID[11:4] GTID[3:0]

Inst Reserved BMC ProcNum ContextNum

Field Name Interpretation

Inst 0 - Data related request..
1 - Instruction releated request.

Reserved Implementation specific.

BMC 0 - ContextNum identifies a CPU context number.
1 - ContextNum identifies a BMC channel number.

ProcNum Procesor Number

ContextNum Within-processor context number or BMC channel
number.

Revision 1.4 Lexra Proprietary & Confidential 95

LX8380 Section 8. Lexra System Bus (LBUS)

8.8.1. LBC Commands

The LBC issues only the LBUS commands listed in the table below.

Table 41: LBUS Commands Issued by the LBC

8.8.2. Write Buffer

The LX8380 includes a write buffer in its CBUS Interface. When the LX8380 is configured to include the
LBC, the CBUS Interface and its write buffer are always included as an internal LX8380 module. See
Section 7.2, for a description of the write buffer.

8.8.3. LBC Read Buffer

The LBC contains a read buffer with a depth that is configurable withlconfig. All incoming read data from
the system bus passes through the read buffer. This allows the LBC to accept incoming data as a result of a
cache line fill operation without having to hold the bus.

When the LBC is configured with an asynchronous interface, a larger read buffer improves system and
processor performance in the event of a cache miss. When the LBC is configured with a synchronous
interface, the cache can accept non-split read data as fast as the LBC can transfer it. There is no need for a
large read buffer if split read transactions are not employed. Throughlconfig, the size of the read buffer may
be reduced to a minimum size of two 64-bit data entries.

Command BCMD[8:6] BCMD[5:4] BCMD[3:0] Circumstances

Read Line (non-split) 000 10 or 11,
depending
on configu-
ration

undefined A cache miss during a read by the
CPU, and the CPU is not config-
ured to use split transactions for all
reads.

Read Single
(twinword/word/half-
word/byte)

000 00 10xx or
1100

A read by the CPU from an
address in uncachable address
space, and the CPU is not config-
ures to use split transactions for all
reads.

Write Line 001 10 or 11,
depending
on configu-
ration

xxxx When the data cache is configured
for write-back operation, a read
miss requires replacement of a
dirty line.

Write Single
(word/halfword/byte)

001 00 10xx A write by the CPU into cacheable
or uncachable address space.

Split Read 010 00 for Split
Read Sin-
gle, 10 or
11 for Split
Read Line.

1011, 1100
or 0000

An LW.CSW, LT.CSW or LQ.CSW
instruction is executed. Also per-
formed for all bus read operation if
the CPU is configured to use split
transactions for all reads.

Write Split Read 011 00 1011,1100
or 0000

A WDLW.CSW, WDLT.CSW or
WDLQ.CSW instruction is exe-
cuted.

96 Lexra Proprietary & Confidential Revision 1.4

Section 8. Lexra System Bus (LBUS) LX8380

In some applications, there is a need to minimize the number of gates. The read buffer size may be reduced to
two entries for the asynchronous case. This causes a penalty in terms of LBUS utilization since the LBC may
have to delay the read (by de-asserting IRDY) if it cannot hold part of the line of data. When the read buffer is
the size of a cache line, this will be rare since simultaneous instruction cache and data cache misses are
relatively rare. For a smaller read buffer, delays are likely.

8.9. Transaction Descriptions

This section describes the various types of LBUS read and write transactions in detail. These operations
adhere to the following protocols:

1. Agents that drive the bus do so as early as possible after the rising edge of the bus clock. There
is some time to perform combinational logic after the bus clock goes high, but the amount of
time is determined by the speed of the bus clock and the number of devices on the bus.

2. Agents sample signals on the bus at the rising edge of the bus clock.

3. All bus signals must be driven at all times. If the bus is not owned, and external device must
drive the bus to a legal level.

4. A change in signal ownership requires one cycle during which the signal is not driven. If an
initiator gives up the bus, another initiator needs to wait for one undriven cycle before it can
drive the bus. If the same initiator issues a read operation and then needs to issue a write oper-
ation, it also must wait one extra cycle to ensure that the undriven cycle is present.

5. Agents that own signals must drive the signals to a logical true or logical false; all other agents
must disable (tristate) their output buffers.

The Lexra Bus protocol is based on the PCI Bus protocol1. The Lexra Bus signals BFRAME, BTRY, BIRDY,
and BSEL have a similar function to the PCI signals FRAME#, TRDY#, IRDY#, and DEVSEL#,
respectively. In general, the protocol for the Lexra bus is as follows:

1. The initiator gains control of the bus through arbitration (described Section 8.12 on page 107).

2. During the first bus cycle of its ownership (before the first rising clock edge), the initiator
drives the address for the bus transaction onto BADDR. At the same time, it asserts BFRAME
to indicate that the bus is in use. It will de-assert BFRAME before it send or accepts the last
data beat. In most cases, the initiator will assert BIRDY to indicate that it is ready to receive
data (or read operations) or is driving valid data (for write operations). If the operation is a
write, the initiator will drive valid data onto BDATA.

3. At the rising edge of the first clock, all agents sample BADDR and decode it to determine
which agent will be the target.

4. The agent that determines that the address is within its address space asserts BSEL sometime
after the first rising edge of the bus clock. BSEL stays asserted until the transaction is com-
plete.

5. The initiator and the target transfer data either in one cycle or in successive cycles. The agent
driving data (the initiator for a write, the target for a read) indicates valid data by asserting its
ready signal (IRDY or TRDY for writes and reads, respectively). The agent receiving data (tar-
get for a write, initiator for a read) indicates its ability to receive the data by asserting its ready

1. The Lexra Bus is not PCI compatible; it merely borrows concepts from the PCI Bus specification.

Revision 1.4 Lexra Proprietary & Confidential 97

LX8380 Section 8. Lexra System Bus (LBUS)

signal. Either agent may de-assert its ready signal to indicate that it cannot source or accept
data on this particular clock edge.

6. When the initiator is ready to send or receive the last data beat, that is, when it asserts BIRDY
for the last time, it also de-asserts BFRAME. It will de-assert BIRDY when the last data beat is
transferred.

7. The arbiter grants the bus to the next initiator, and may do so during a bus transfer by a differ-
ent initiator. The new initiator must sample BFRAME and BIRDY. When both BIRDY and
BFRAME is sampled de-asserted and the new initiator has been given grant, it can assert
BFRAME the next cycle to start a new transaction.

NOTE: in the examples below, the signals BADDR and BDATA are often shown to be in a high-impedance
state. In reality, internal bus signals should always be driven, even if they are not being sampled. The Hi-Z
states are shown for conceptual purposes only.

8.9.1. Single Data Read with No Waits

This operation is used to read a twinword, word, halfword or byte from memory, usually in uncachable
address space. The LBC does not issue non-split Line Read transactions if the processor is configured to
employ split reads for all read operations. Instead, a Split Read is issued.

This is a simple read operation where the target responds immediately with data. This is unlikely, since most
devices will require one or more cycles to return data. This example illustrates the most basic read operation
without waits.

1. Initiator asserts BFRAME and drives BADDR.

2. Target asserts BSEL to indicate to initiator that a target is responding. In this example, there is
an immediate fetch of data, so Target drives data and asserts BTRDY to indicate to target that it
is driving data. The Initiator de-asserts BFRAME and asserts BIRDY to indicate that the next
piece of data received will be the last.

3. Initiator de-asserts IBIRDY and the target de-asserts BSEL and BTRDY to indicate the end of
the transaction. The Initiator that has been given grant owns the bus this cycle.

CLOCK
BFRAME

BCMD
BADDR
BDATA
BIRDY

BTRDY
BSEL

D0000

98 Lexra Proprietary & Confidential Revision 1.4

Section 8. Lexra System Bus (LBUS) LX8380

8.9.2. Single Data Read with Target Wait

This is the same as the single data read, except that the target needs time to fetch the data from memory.

This is a common single data read operation.

1. Initiator asserts BFRAME and drives BADDR.

2. Target asserts BSEL to indicate that it has decoded the address and is acknowledging that it is
the target device. However, it is not ready to send data, so it does not assert BTRDY. Initiator
de-asserts BFRAME and asserts BIRDY to indicate that the next piece of data will be the last it
wants.

3. Target has not asserted BTRDY so no data is transferred.

4. After a second wait cycle, target drives data and asserts BTRDY to indicate that data is on the
bus.

5. Target de-asserts BSEL and BTRDY. Initiator de-asserts BIRDY. Another initiator may drive
the bus this cycle.

8.9.3. Line Read with No Waits

A Line Read transfers data beats that comprise a cache line. In this example, four data beats are transferred in
sequence without any waits. The LBC does not issue non-split Line Read transactions if the processor is
configured to employ split reads for all read operations. Instead, a Split Read is issued.

1. Initiator drives BADDR and asserts BFRAME to indicate beginning of transaction.

CLOCK

BFRAME

BCMD

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0001

CLOCK

BFRAME

BCMD

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0002

Revision 1.4 Lexra Proprietary & Confidential 99

LX8380 Section 8. Lexra System Bus (LBUS)

2. Target asserts BSEL to indicate that it had decoded the address and will send data when it is
ready. Initiator asserts BIRDY to indicate that it is ready to receive data.

3. Target drives data and asserts BTRDY.

4. Target drives second data beat and continues to assert BTRDY.

5. Target drives third data beat and continues to assert BTRDY.

6. Target drives last data beat. Initiator de-asserts BFRAME to indicate that the next data beat it
receives will be the last it needs.

7. Target de-asserts BTRDY and BSEL; initiator de-asserts BIRDY. Another master may gain
ownership of the bus this cycle.

8.9.4. Line Read with Target Waits

This illustrates what happens when a target needs extra time to fetch data it needs to service a cache miss.

1. Initiator asserts BFRAME and drives BADDR.

2. Target asserts BSEL to indicate that it is acknowledging the operation. Initiator asserts BIRDY
to indicate that it is ready to receive data.

3. Target waits until it has the data.

4. Target drives first data beat and asserts BTDRY.

5. Target drives second data beat and asserts BTRDY.

6. Target cannot get third data beat, so it de-asserts BTRDY.

7. Target drives third data beat and asserts BTRDY.

8. Target cannot get fourth data beat, so it de-asserts BTRDY.

9. Target drives fourth data beat and asserts BTRDY.

CLOCK

BFRAME

BCMD

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0003

100 Lexra Proprietary & Confidential Revision 1.4

Section 8. Lexra System Bus (LBUS) LX8380

8.9.5. Line Read with Initiator Waits

This occurs when a line of data is requested from the target and the initiator cannot accept all of the data in
successive cycles.

1. Initiator drives address and asserts BFRAME.

2. Target asserts BSEL. It doesn’t have data, so it does not assert BTRDY. Initiator asserts BIRDY
to indicate that it can accept data

3. Target now has data, so it drives the data and asserts BTRDY.

4. Target drives second data beat; initiator cannot accept it, so it de-asserts BIRDY.

5. Target holds second data beat; initiator can accept it and asserts BIRDY.

6. Target drives third data beat; initiator accepts it.

7. Target drives fourth data beat; initiator cannot accept it and de-asserts BIRDY. initiator hold
BFRAME until it can assert BIRDY.

8. Initiator asserts BIRDY to accept fourth data beat. It de-asserts BFRAME to indicate this is the
last data beat.

8.9.6. Burst Read

The burst read transaction is similar to a line read, except that BCMD indicates a burst read. The end of the
burst is indicated when the initiator de-asserts BFRAME and BIRDY.

8.9.7. Single Data Write with No Waits

A single data write operation occurs when the LX8380 processor executes a store instruction that misses the
data cache, or executes a store operation in write-through mode. Writes to uncacheable address space also
generate a single data write. Single data write operations are used to write twinwords, words, halfwords and
bytes. (But note, the LX8380 does not generate twinword writes.)

CLOCK

BFRAME

BCMD

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0004

Revision 1.4 Lexra Proprietary & Confidential 101

LX8380 Section 8. Lexra System Bus (LBUS)

A single data write without waits requires two cycles.

1. Initiator asserts BFRAME and drives address.

2. Target samples address and asserts BSEL. Initiator drives data and asserts BIRDY. In this case,
target is also able to accept data, so it asserts BTRDY. Initiator also de-asserts BFRAME to
indicate that it is ready to send the last (and only) data beat.

3. Target accepts data, de-asserts BTRDY and BSEL. Initiator de-asserts BIRDY.

8.9.8. Single Data Write with Waits

This is an example of a single data write operation where the target cannot immediately accept data and must
insert wait states.

This is the same description as the above example, except that the target inserts two wait states until it asserts
BIRDY to indicate acceptance of data.

8.9.9. Line Write with No Waits

A line write operation is generally used to transfer a modified cache line from a cache to main memory. The

CLOCK

BFRAME

BCMD

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0005

CLOCK

BFRAME

BCMD

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0006

102 Lexra Proprietary & Confidential Revision 1.4

Section 8. Lexra System Bus (LBUS) LX8380

following illustrates a best-case scenario with no wait states.

1. Initiator drives address and asserts BFRAME.

2. Target asserts BSEL and BTRDY to indicate it will accept data. Initiator drive data and asserts
BIRDY.

3. Initiator drives next data beat; target continues to accept data and indicates as such by continu-
ing to assert BTRDY.

4. Initiator drives third data beat; target continues to accept.

5. Initiator drives fourth data beat and de-asserts BFRAME to indicate that this will be its last
beat sent; target accepts data.

6. Target de-asserts BTRDY and BSEL; initiator gives up control of the bus by de-asserting
BIRDY.

8.9.10. Line Write with Target Waits

This example is similar to the above example, except that during the third and fourth data beat transfer, the
target cannot accept the data quickly enough, so it de-asserts BTRDY which indicates to the initiator that it
should hold the data for an additional cycle.

CLOCK

BFRAME

BCMD

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0007

CLOCK

BFRAME

BCMD

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0008

Revision 1.4 Lexra Proprietary & Confidential 103

LX8380 Section 8. Lexra System Bus (LBUS)

8.9.11. Line Write with Initiator Waits

The example illustrates what happens when the initiator cannot supply data fast enough and has to insert
waits.

8.9.12. Burst Write

A burst write is generally used to transfer large amounts of data from an I/O device to memory via a DMA
transfer. This transaction is similar to a line write, except that BCMD indicates a burst write. The end of a
burst write is indicated when the initiator de-asserts BFRAME and BIRDY.

8.9.13. Split Read command

The processor may be configured withlconfig to issue Split Read commands for all read operations.
Otherwise, the LBC issues a Split Read command only when the processor executes an LW.CSW, LT.CSW
or LQ.CSW instruction. The following is an example of a single word read request.

1. An LBC initiates the transaction by asserting FRAME and driving the ADDR for the transac-
tion. It drives the CMD bus with the Split Read command. GTID is also driven by the LBC
with the Processor/Context Number information.

2. The target decodes the address and asserts SEL and TRDY to respond to the request. TRDY
should always be asserted with SEL. It saves the ADDR and GTID information which it will
use when it returns the data. No data needs to be transferred, so the data bus is inactive.
FRAME is de-asserted and ADDR, CMD, GTID are not driven. IRDY is asserted.

3. The LBC de-asserts IRDY and the target device de-asserts SEL and TRDY to indicate the split
read request transaction is complete.

CLOCK

BFRAME

BCMD

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0009

CLOCK

BFRAME

BCMD

BGTID

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0010

104 Lexra Proprietary & Confidential Revision 1.4

Section 8. Lexra System Bus (LBUS) LX8380

There are no data stalls allowed since no data is being transferred. The target should assert TRDY as soon as
it asserts SEL.

The first half of the read transaction is now complete. The LBC will wait for the target device to return the
requested data using the Split Data command.

8.9.14. Write Split Read

When the processor executes a WDLW.CSW, WDLT.CSW or WDLQ.CSW instruction, the LBC issues a
write command with split read request. With this command, the LBC writes data to a device while
simultaneously making a split read request. The write data consists of two words. The requested read data
size may be 1, 2 or 4 words, indicated by CMD[3:0].

1. An LBC initiates the transaction by asserting FRAME and driving the ADDR for the transac-
tion. It drives the CMD bus with a Write Split Read command and CMD[3:0] indicates either
one word or two word split read request. GTID is driven with the Processor/Context Number
information.

2. The target decodes the address and asserts SEL. In this example the target is immediately ready
to accept the write data so it also asserts TRDY. It saves the GTID information which it will use
when it returns the data. The LBC de-asserts FRAME since this is a single cycle write. It also
drives IRDY and the DATA bus. ADDR, CMD and GTID are only driven the first cycle.

3. The LBC de-asserts IRDY and the target device de-asserts SEL and TRDY to indicate the write
transaction has completed. The read request has also been transferred and the target must issue
a data response at a later time.

The transaction will look the same for a split read request of two words, except CMD[3:0] will indicate a two
word request instead of one word.

Since write data is being transferred with these transactions, data stalls are allowed. The rules for TRDY and
IRDY are the same for these write transactions as they are for regular write transactions.

When an LBC issues a Split Read or Write Split Read command and successfully completes the request to
the target, the LBC will consider that operation complete. It is the responsibility of the target device to return
data to the LBC by issuing a Split Data command.

CLOCK

BFRAME

BCMD

BGTID

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0011

Revision 1.4 Lexra Proprietary & Confidential 105

LX8380 Section 8. Lexra System Bus (LBUS)

8.9.15. Split Data

Once an LBC has sent a split read request (either with a Split Read or Write Split Read command) and the
target device has accepted the request, the device must supply the requested data and return it to the LBC. To
do this, it must act as an LBUS master device and initiate a Split Data command. The LBC which originated
the Split Read will act as LBUS target device and accept the data. An LBC only acts as a target for Split Data
commands.

1. The LBUS device that accepted the read request now asserts FRAME to indicate it is ready to
return the requested data. It drives CMD with the Split Data command. CMD also indicates the
transaction size. The GTID bus is driven with the correct Processor/Context information. The
ADDR bus must be driven with the address of the requested read data.

2. Each LBC examines the GTID bus to determine which Processor this data is for. The LBC that
is associated with the ProcNum asserts SEL and TRDY to accept the two words of data.
FRAME is de-asserted while IRDY is asserted. ADDR, CMD and GTID are only driven the
first cycle.

3. The master device de-asserts IRDY and the LBC de-asserts SEL and TRDY to indicate the
transaction is complete.

The LBC then returns the read data to the context that requested it.

The CMD encoding indicates the transaction size. If the processor is configured to issue Split Read
commands for all read operations, the split read data size may be 1, 2, 4, 8 or 16 bytes, or a cache line.
Otherwise the split read data size is limited to 4, 8 or 16 bytes. The data is aligned on the data bus based on
the original read address, according to the rules shown in Table 39 on page 93.

Data stalls are allowed during data response transactions. An LBC will properly handle data stalls on the bus,
and may de-assert TRDY to stall the transaction itself. For performance reasons, the Read Buffer in the LBC
should be large enough to avoid this.

8.10. Ordering Rules with Split Transactions

The LBC follows the same rules for allowing a Split Read request to be issued as it would a standard read
request.

Once an LBC has issued the Split Read or Write Split Read command, it does not keep track of the read
request. This means a subsequent write transaction could be issued to the same address before the requested
data has been returned to the LBC. The LBC will not stall the write or try to enforce any coherency in this
case.

CLOCK

BFRAME

BCMD

BGTID

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0012

106 Lexra Proprietary & Confidential Revision 1.4

Section 8. Lexra System Bus (LBUS) LX8380

If more than one Split Read/Write Split Read request is outstanding on the LBUS, the corresponding data
responses do not have any ordering requirements. The LBC will use the GTID that was presented with the
split data to return the data to the correct context.

8.11. LBC Signals

The table below summarizes the LX8380 LBC ports. The “LBC Port” column indicates the name of the port
supplied by the LBC. The “Bus Signal” column indicates the corresponding Lexra bus signal. The LBC ports
are strictly uni-directional, while the bus signals (at least conceptually) include multiple sources and sinks.
The manner in which LBC ports are connected to bus signals is technology dependent, and may employ tri-
state drivers or logic gating in conjunction with the LBC’s LCoe, LDoe and LToe outputs.

Table 42: LBC Interface Signals

I/O LBC Port Bus Signal Description

output LAddrO[31:0] BADDR[31:0] LBC address

output LDataO[63:0] BDATA[63:0] LBC data

input LDataI[63:0] BDATA[63:0] System data

output LIrdy BIRDY LBC initiator ready

input LIrdyI BIRDY System initiator ready

output LFrame BFRAME LBC transaction frame

input LFrameI BFRAME System transaction frame

output LSelO BSEL LBC slave select

input LSel BSEL System slave select

output LTrdyO BTRDY LBC target ready

input LTrdy BTRDY System target ready

output LCmd[8:0] BCMD[8:0] LBC command

input LCmdI[8:0] BCMD[8:0] System command

output LGTidO[15:0] BGTID[15:0] LBC global thread ID

input LGTidI[15:0] BGTID[15:0] System global thread ID

output LReq - LBC bus request

input LGnt - System bus grant

output LCoe[9:0] - LBC command output enable terms

output LDoe[7:0] - LBC data output enable terms

output LToe - LBC transaction output enable terms

Revision 1.4 Lexra Proprietary & Confidential 107

LX8380 Section 8. Lexra System Bus (LBUS)

8.12. Arbitration

8.12.1. LBUS Rules

The following are the LBUS rules for arbitration.

REQ = a request from a master.

GNT = grant to the master.

idle = BFRAME and BIRDY are both de-asserted.

last = BIRDY and BTRDY are both asserted, and BFRAME is de-asserted.

busy = BIRDY or BTRDY or BFRAME are asserted.

1. Master asserts REQ at the beginning of a cycle and may start sampling for asserted GNT in the
same cycle (in case GNT is already asserting in the case of a “park”).

2. If bus isidle or if the bus is in thelastdata phase of the previous transaction when master sam-
ples asserted GNT, then the master may drive BFRAME asserted on next cycle.

3. If the bus isbusy when the master samples GNT, the master must also snoop BFRAME,
BIRDY and BTRDY. If GNT is still asserted one cycle after BFRAME is de-asserted and both
BIRDY and BTRDY are asserted (the last data phase), the master may drive BFRAME.

8.12.2. LBC Behavior

When the LBC needs access to LBUS, it asserts LReq and in the same cycle samples LGnt, ~LFrameI, and
either ~LIrdyI or (LIRdyI & LTrdy). If these are true, the LBC takes ownership of the bus on the next cycle.
The LBC de-asserts LReq the cycle after it asserts LFrame. If the bus is busy, the LBC continues to snoop
these four signals for this condition. All other LBUS arbitration rules are based on this behavior of the LBC.

8.13. Connecting the LBC to LBUS

The LBC provides are three sets of output enables: LToe (valid for the length of the transaction), LCoe (valid
for only the first cycle of a transaction), and LDoe (valid for data transfers, asserted by the master for writes
and by the slave for reads).

LToe qualifies LTRdyO, LSelO, LFrame and LIrdy.

LCoe qualifies LCmd, LAddrO and LGTidO.

LDoe qualifies LDataO.

Application-specific devices may employ similar signals to qualify their LBUS outputs.

Instead of using the LBC’s LToe and similar signals from application-specific bus devices, it may instead be
desirable to logically OR the FRAME outputs from the LBC and all devices. This can be done either
centrally or with one OR gate for each target and master. The same holds true for IRDY, TRDY, and SEL
outputs. This simplifies the connections when a relatively few number of devices are used and there are no
off-chip devices connected directly to the Lexra Bus.

Masters and slaves not taking part in a transaction must always keep their FRAME, IRDY, TRDY, and SEL
outputs driven and de-asserted.

108 Lexra Proprietary & Confidential Revision 1.4

Section 8. Lexra System Bus (LBUS) LX8380

Revision 1.4 Lexra Proprietary & Confidential 109

LX8380 Section 9. Block Move Controller (BMC)

9. Block Move Controller (BMC)

9.1. BMC Overview

The BMC performs arbitrary length transfers between DMEM and system devices such as main memory.
The transfer length may be 1-262,144 (256K) bytes, with byte granularity. The BMC breaks the transfer into
a series of transaction requests which are presented to the Data Local Memory Interface (DLMI). The DLMI
uses its CBUS interface to access the system device.

Each BMC transfer is assigned to achannel. The BMC supports up to 16 channels. A hardware register set is
provided to setup and control each channel’s transfer. In the LX8380, each channel is usually associated with
a processor context.

BMC registers are accessed via the coprocessor 3 interface. Software requests a BMC transfer by performing
move operations to the register set. Register contents persist between transfer requests, reducing the number
of instructions required to request subsequent transfers. Software typically performs a context switch after
making a transfer request.

The BMC informs the CPU when a transfer completes either through a flag that can be polled by software, an
interrupt, or by clearing the appropriate CPU Wait-Event bit to activate an idle context.

The DLMI provides the data interconnect between CBUS, DMEM, DCACHE, and the CPU. Requests for
data transfers may be initiated by the CPU or the BMC. These requests are processed by the DLMI and
passed to the CBUS. The DLMI can be configured to provide either a one or two-port DMEM interface. With
a one port interface, CPU and BMC transfers share the port, and an arbitration scheme is used. With a two
port interface, the CPU and BMC each have a dedicated port.

Figure 21: Block Move Controller

CPU

BMC (COP3)
DLMI

CPU Data Requests

CBUS

Coprocessor 3
Interface

Register Set
(1 per channel)

Transaction
Request Logic CBI

BMC
Transaction
Requests

Port 1

Port 2
(Optional)

CPU Requests
and Data

BMC Requests
and Data

DMEM

110 Lexra Proprietary & Confidential Revision 1.4

Section 9. Block Move Controller (BMC) LX8380

9.2. Transfers

The BMC is controlled via the coprocessor 3 interface. The BMC has one set of registers for each channel.
Software requests a BMC transfer by performing move operations to a channel’s register set. Register
contents persist between transfer requests, reducing the number of instructions required to request subsequent
transfers.

Software may request read or write transfers. Write transfers move data from DMEM to a device. Read
transfers move data from a device to DMEM. Software typically performs a context switch after making a
transfer request via the CSW instruction.

Software must not change the values written to a channel’s register set while a transfer request from that
channel is pending. Software may update a channel’s register set after notification of transfer completion.

Transfer requests are assigned to a transactionclassvia a field in each channel’s register set. Within a single
transfer class, transfers requests are processed sequentially, with the oldest request processed first. Across
transfer classes, transfers are interleaved. Transfers may be interleaved because they are broken into
transactions, described in the next section. Interleaved transfers are processed in a round-robin fashion.

Interleaving transfers generally improves system performance, assuming that the interleaved transfers target
different devices. Since any one device has more time to process a transaction, it is less likely to stall the
system bus. Interleaved transfers may not be appropriate if the transfers target the same device. For example,
in a streaming device, transactions associated with a transfer must occur in sequence. In this case, all
transfers targeting the streaming device must share the same class.

9.3. Transactions

The BMC breaks each transfer into a series of transaction requests. The transaction size may be byte, word,
double word, or line. There are separate control bits to disable word, double word, and line transactions.

When a read transfer is requested, the resulting transactions are split reads. The DLMI allows multiple
outstanding split read transactions in order to fully utilize the system bus.

The size of a transaction is selected based on the CBUS transfer address and transfer length. The largest
enabled transaction size that meets the following criteria is selected:

• The transaction size must be aligned to the current CBUS transfer address
• The transaction size must not cause the requested transfer length to be exceeded

Revision 1.4 Lexra Proprietary & Confidential 111

LX8380 Section 9. Block Move Controller (BMC)

Here is an example of this process:

• Transfer size: 91 bytes
• word transactions disabled
• CBUS transfer starting address: 0x0000_000f
• Line size: 32 bytes

An option is provided to maintain a constant CBUS address. In this case, the transaction size is fixed at the
largest enabled transaction size. If the transfer size requested is not an integer multiple of this transaction size,
the final transaction is padded. The padding bits consist of whatever follows the transfer data in DMEM.

Here is an example showing the transaction requests generated:

• Line transactions disabled
• CBUS transfer starting address: 0x0000_0008
• Transfer size: 26 bytes

9.4. Transaction Sequence Due to Transfer Class

The examples in the previous section show sequences of sequential transaction requests that are all associated
with the same transfer. Transaction requests occur in this way if the same transfer class is applied to all
transfer requests. If different transfer classes are applied to pending transfer requests, transaction requests
alternate between transfer requests on a round-robin basis.

Transaction
Address

Transaction
Size

0x0000_000f byte

0x0000_0010 double word

0x0000_0018 double word

0x0000_0020 line

0x0000_0040 line

0x0000_0060 double word

0x0000_0068 byte

0x0000_0069 byte

Transaction
Address

Transaction
Size

0x0000_0008 double word

0x0000_0008 double word

0x0000_0008 double word

0x0000_0008 double word

112 Lexra Proprietary & Confidential Revision 1.4

Section 9. Block Move Controller (BMC) LX8380

For example, if four transfer requests are pending with the following characteristics:

The sequence of transaction requests from the BMC to the DLMI with these pending transfer requests are:

9.5. BMC Per-Channel Registers

A coprocessor 3 register set exists for each channel. Per-channel registers are implemented using the
coprocessor 3 general registers. General registers are read using the mfc3 instruction, and written using the
mtc3 instruction. The contents of the general registers persist until a new value is written. The 0 fields in these
registers are ignored on write and are 0 on read. For compatibility with future LX8380 versions, the 0 fields
should be written with 0.

BMC_CBUSADR (R16)

Transfer
Identifier

Transfer
Class

Number of
Transactions
Required

TA 0 2

TB 0 1

TC 1 2

TD 2 3

Transfer
Identifier

Transaction
Number

Transfer
Complete?

TA 0 No

TC 0 No

TD 0 No

TA 1 Yes

TC 1 Yes

TD 1 No

TB 0 Yes

TD 2 Yes

31 - 0

cbusAdr

Field Description R/W Reset

cbusAdr CBUS transfer physical starting address R/W 0

Revision 1.4 Lexra Proprietary & Confidential 113

LX8380 Section 9. Block Move Controller (BMC)

BMC_DMEMADR (R17)

BMC_XFERLEN (R18)

BMC_PARAM (R19)

31 - 18 17 - 0

0000_0000_0000_00 dmemAdr

Field Description R/W Reset

dmemAdr DMEM transfer physical starting address. Only the bits used by the con-
figured DMEM size are required (e.g. 64K DMEM requires bits 15:0).
Other bits are don’t care.

R/W 0

31 - 19 18 - 0

0000_0000_0000_0 xferLen

Field Description R/W Reset

xferLen Transfer length. 1 - 262,144 bytes (256K)
0 = no operation, > 262,144 undefined

R/W 0

31 - 24 23 - 20 19 - 18 17 16

0000_0000 xferType 00 intEnable bmcPriority

15 - 8 7 - 4 3 2 1 0

0000_0000 xferClass noCbusInc noLine noDword noWord

Field Description R/W Reset

xferType 0001 = read transfer
0010 = write transfer
other encoding = reserved

R/W 0

intEnable 0 = disable interrupt; 1 = enable interrupt R/W 0

bmcPriority 0 = CPU Priority; 1 = BMC priority R/W 0

xferClass transfer class (0 - 15) R/W 0

noCbusInc 0 = increment CBUS address; 1 = don’t increment CBUS address R/W 0

noLine 0 = allow line transactions; 1 = disable line transactions R/W 0

noDword 0 = allow dword transactions; 1 = disable dword transactions R/W 0

noWord 0 = allow word transactions; 1 = disable word transactions R/W 0

114 Lexra Proprietary & Confidential Revision 1.4

Section 9. Block Move Controller (BMC) LX8380

BMC_CMD (R20)

9.6. BMC Global Registers

Global registers apply to all channels. They are used to manage interrupts and the per-channel registers.
Global registers are implemented using the coprocessor 3 control registers. Control registers are read using
the cfc3 instruction, and written using the ctc3 instruction. The 0 fields in these registers are ignored on write
and are 0 on read. For compatibility with future LX8380 versions, the 0 fields should be written with 0.

BMC_REGSET (C16)

BMC_DONEVEC (C17)

31 30 - 3 2 - 0

bmcBusy 000_0000_0000_0000_0000_0000_0000_0 command

Field Description R/W Reset

bmcbusy 0 = no transfer in progress; 1 = transfer in progress
Set to 1 when a transfer is initiated for this channel.
Set to 0 when the transfer completes, or when stop transfer command is
issued

R 0

command 000 clear done
001 start transfer,
 set BMC_DONEVEC’s bit for this channel = 0,
 set bmcBusy = 1
010 stop transfer,
 set BMC_DONEVEC’s bit for this channel = 1,
 set bmcBusy = 0
others reserved.

R/W 0

31 - 9 8 7 - 4 3 - 0

0000_0000_0000_0000_0000_000 useActiveSet 0000 activeRegSet

Field Description R/W Reset

useActiveSet 0 = don’t use activeRegSet, instead use active context
1 = use activeRegSet

R/W 0

activeRegSet Channel whose register set is the target of coprocessor 3 reads and
writes.

R/W 0

31 - 16 15 - 0

0000_0000_0000_0000 doneVec

Field Description R/W Reset

doneVec Bit vector corresponding to each channel. In any bit position:
0 = transfer not complete
1 = transfer complete
A channel’s bit is set = 1 when its transfer completes, or a stop transfer
command is issued. The bit is set = 0 when the clear done or start
transfer command is issued.

R 0

Revision 1.4 Lexra Proprietary & Confidential 115

LX8380 Section 9. Block Move Controller (BMC)

BMC_INTLOW (C18)

BMC_INTENVEC (C19)

9.7. Per-Channel Register Set Selection

The BMC supports up to 16 channels. Each channel has its own register set used for specifying and
controlling BMC transfers. Two techniques are provided for selecting which register set is accessed by
software during coprocessor 3 reads and writes:

1. Explicit register set selection: The register set accessed may be selected by placing its value in
BMC_REGSET[activeRegSet], and setting BMC_REGSET[useActiveSet] = 1. This mode
allows access to any channel’s register set.

2. Automatic register set selection. The register set accessed is selected automatically based on
what context is active. This mode is selected by setting BMC_REGSET[useActiveSet] = 0.
When using this mode, only one transfer request may be pending per context.

9.8. Transfer Completion

A transfer associated with a particular channel must complete before another transfer is requested using that
channel. Software may check for transfer completion using the following techniques:

1. Polling. Software can poll if a transfer is in progress (BMC_CMD[bmcBusy]) or if a transfer
is done (BMC_DONEVEC). The transfer done bit remains asserted until cleared.

2. Interrupt. The BMC interrupt line (BMC_INT_R_N) is an output of the LX8380 processor.
The customer may connect this signal to any of the INTREQ_N[15:2] inputs. In the Lexra test-
bed environment, the BMC interrupt is connected to INTREQ_N[12].

The BMC interrupt is the logical OR of the BMC_DONEVEC bits for every channel ANDed
with its associated interrupt enable bit. The enable bit is available in the per-channel
BMC_PARAM register, or simultaneously for every channel in the BMC_INTENVEC regis-
ter. A Verilog representation of the BMC interrupt signal is:

interrupt = 0;
for (i = 0; i < number_of_channels; i = i + 1)

interrupt = (BMC_DONEVEC[i] & BMC_INTENVEC[i]) | interrupt;

31 30 - 4 3 - 0

intPending 000_0000_0000_0000_0000_0000_0000 lowestInt

Field Description R/W Reset

intPending 0 = no interrupt pending; 1 = interrupt pending R 0

lowestInt Encoded value of lowest numbered channel with a pending interrupt R 0

31 - 16 15 - 0

0000_0000_0000_0000 intEnVec

Field Description R/W Reset

intEnVec Mirror of the BMC_PARAM intEnable bit for each channel. R/W 0

116 Lexra Proprietary & Confidential Revision 1.4

Section 9. Block Move Controller (BMC) LX8380

The interrupt handler must clear the appropriate BMC_DONEVEC bits when interrupt processing
is complete. Five instructions must pass after the write that clears BMC_DONEVEC before
interrupts are re-enabled.

3. Wait-Event. To use the Wait-Event mechanism to activate a context after transfer completion,
software uses a CSW instruction with Wait-Event bit 2 set (see the Example Transfer Flow sec-
tion). The context will not reactivate until Wait-Event bit 2 clears. The BMC signals transfer
completion by clearing Wait-Event bit 2 for the context that requested the transfer, allowing
that context to reactivate.

Some write transactions may be pending in the CBI write buffer when write transfer completion is signalled.

9.9. CPU-BMC arbitration

When a one port DMEM interface is configured, requests for DMEM access from the CPU and BMC are
arbitrated. Arbitration applies to DMEM accesses related to both read and write BMC transfers. Each
channel’s register set has a control bit (BMC_PARAM[bmcPriority]) which is used to select the priority of
that channel’s BMC request relative to the CPU.

Arbitration occurs on a per transaction basis. This implies that multiple arbitration events are required to
complete a single transfer.

9.10. Software Responsibility for Transfer Requests

The data cache is never accessed as a result of a BMC transaction. If the CBUS address used for a transaction
hits an address that is resident in the data cache, the data cache and main memory become incoherent as result
of the transfer. It is software’s responsibility to manage cache coherency.

Software must also ensure that no portion of the requested transfer exceeds the limits of physically configured
DMEM. The BMC provides no checking for inconsistent transfer specifications.

9.11. Example Transfer Flow

The following BMC transfer flow demonstrates the use of Wait-Event bits to signal transfer completion.

1. For write transfers, software moves the write data into DMEM.

2. Software selects the mode for channel selection by using actc3 instruction to load
BMC_REGSET.

3. Software sets up transfer characteristics by usingmtc3 instructions to load BMC general regis-
ters.

4. Software starts the transfer by using amtc3 instruction to load a command in BMC_CMD. A
context switch (via the CSW instruction) is normally performed so another thread can continue
execution while the transfer is in progress. The following code sequence is typical:

csw r1 # r1 contains 0x04000000 to set wait-event
bit 2 in this context’s CXSTATUS

mtc3 r2, BMC_CMD # start BMC transfer in csw delay slot
r2 contains start command

Revision 1.4 Lexra Proprietary & Confidential 117

LX8380 Section 9. Block Move Controller (BMC)

5. The BMC makes transaction requests to the DLMI, waiting for an acknowledgment before
proceeding to the next request. While the BMC makes these requests, other threads continue
execution.

6. The DLMI services each request by issuing the appropriate transactions, and returning an
acknowledgment to the BMC when it is able to accept a new request.

7. When the final transaction request has been acknowledged, the BMC clears Wait-Event bit 2
for the requesting context, allowing it to resume execution. If the completed transfer is a write
transfer, software must cause a write buffer flush (technique TBD) before attempting to access
data.

The following BMC transfer flow demonstrates the use of interrupts to signal transfer completion.

1. For write transfers, software moves the write data into DMEM.

2. Software selects the mode for channel selection by using actc3 instruction to load
BMC_REGSET.

3. Software sets up transfer characteristics by usingmtc3 instructions to load BMC general regis-
ters. The BMC_PARAM[intEnable] bit must be asserted to allow interrupts.

4. Software starts the transfer by using amtc3 instruction to load a command in BMC_CMD.

5. The BMC makes transaction requests to the DLMI, waiting for an acknowledgment before
proceeding to the next request. While the BMC makes these requests, software continues exe-
cution.

6. The DLMI services each request by issuing the appropriate transactions, and returning an
acknowledgment to the BMC when it is able to accept a new request.

7. When the final transaction request has been acknowledged, the BMC causes the
BMC_INT_R_N signal to assert. This leads to a hardware interrupt. The interrupt handler soft-
ware can determine what channel caused the interrupt by examining BMC_DONEVEC and
BMC_INTENVEC. If more than one channel is causing the interrupt, BMC_INTLOW pro-
vides a quick method for identifying the lowest-numbered interrupting channel. The interrupt
handler must clear the interrupting channel’s request by loading a clear done command in
BMC_CMD.

118 Lexra Proprietary & Confidential Revision 1.4

Section 9. Block Move Controller (BMC) LX8380

Revision 1.4 Lexra Proprietary & Confidential 119

LX8380 Section 10. EJTAG Debug

10. EJTAG Debug

Given the increasing complexity of SoC designs, the nature of embedded processor-design debug, hardware
and software, and the time-to-market requirements of embedded systems, a debug solution is needed which
allows on-chip processor visibility in a cost-effective, I/O constrained manner.

The EJTAG solution uses existing IEEE JTAG pins providing a method of debugging all devices accessible
to the processor in the same way the processor would access those devices itself. Using EJTAG, a debug
probe can access all the processor internal registers and caches. It can also access devices connected to the
LX8380’s CBUS or LBUS, bypassing internal caches and memories. SoC designers need only provide
package connections to the LX8380’s EJTAG signals to obtain the full benefits of embedded system debug
using third party hardware probes and debug software.

EJTAG allows single-stepping through code and halting on breakpoints (hardware and software, address and
data with masking). For debugging problems that are artifacts of real-time interactions, EJTAG gives real-
time Program Counter (PC) trace capabilities from which an accurate program execution history is derived.

10.1. Overview

A debug host computer communicates to the EJTAG probe. The probe, in turn, communicates to the LX8380
EJTAG hardware via an IEEE 1149.1 JTAG interface. Through the use of the JTAG Test Access Port (TAP)
controller, probe data is shifted into the EJTAG data and control registers in the LX8380 to respond to
processor requests, DMA into system memory, configure the EJTAG control logic, enable single-step mode,
or configure the EJTAG breakpoint registers. Through the use of the EJTAG control registers, the user can set
hardware breakpoints on the instruction address, data address or data values.

Physical address range 0xFF20_0000 to 0xFF3F_FFFF is reserved for EJTAG use only and should not be
mapped to any other device.

Currently, Embedded Performance Inc. (EPI) and Green Hills Inc. provide EJTAG debuggers and probes for
the LX8380. Information on these products is available at the following web sites.

EPI Inc.: http://www.epitools.com

Green Hills Inc.: http://www.ghs.com

LX8380 EJTAG implements all required features of version 2.0.0 of the EJTAG specification, including:

• The LX8380 may access debug host resources via addressing of probe memory space.

• Debug host can DMA directly to or from devices attached to the LX8380’s system bus.

• Hardware breakpoints may be installed on internal LX8380 instruction and data busses.

• EJTAG single-step execution mode.

• Real-time PC Trace.

• Debug exception and two EJTAG debug instructions: one for raising a debug exception
via software, and one for returning from a debug exception.

120 Lexra Proprietary & Confidential Revision 1.4

Section 10. EJTAG Debug LX8380

10.1.1. IEEE JTAG-Specific Pinout

IEEE JTAG pins used by EJTAG are shown below. These are required for all EJTAG implementations.
JTAG_TRST_N is an optional pin.

Table 43: EJTAG Pinout

Table 44: EJTAG AC Characteristics 1

Table 45: EJTAG Synthesis Constraints 2

Signal Name I/O Description

JTAG_TDO_NR Output Serial output of EJTAG TAP scan chain.

JTAG_TDI Input Serial input to EJTAG TAP scan chain.

JTAG_TMS Input Test Mode Select. Connected to each EJTAG TAP controller.

JTAG_CLOCK Input JTAG clock. Connected to each EJTAG TAP controller.

JTAG_TRST_N Input TAP controller reset. Connected to each EJTAG TAP controller.a

a. This pin is optional in multiprocessor configurations

Signal Parameter Condition Min Max Unit

JTAG_CLOCK Frequency <1 40 MHz

Duty Cycle 40/60 60/40 %

JTAG_TMS Setup to TCK rising edge 1.8V 5 ns

Hold after TCK rising edge 1.8V 5 ns

JTAG_TDI Setup to TCK rising edge 1.8V 5 ns

Hold after TCK rising edge 1.8V 5 ns

JTAG_TDO_NR Output Delay TCK falling edge to TDO 1.8V 0 7 ns

1. Based on EPI Interface Specifications for MAJICTM and MAJICPLUS TM

Signal Name Probe Budget Core Budget Slack remaining for other logic

JTAG_TDO_NR 0 to -7ns 11.5ns 13.5 to 20.5ns

JTAG_TDI 5ns 13.5ns 6.5ns

JTAG_TMS 5ns 13.5ns 6.5ns

2. Based on 25ns JTAG clock period.

Revision 1.4 Lexra Proprietary & Confidential 121

LX8380 Section 10. EJTAG Debug

10.2. Program Counter (PC) Trace

The LX8380 EJTAG includes support for real-time Program Counter (PC) Trace. When in PC Trace mode,
the LX8380 serially outputs a new value of the program counter whenever there is a change in the PC (i.e. a
context switch, branch or jump instruction, or an exception).

When the PC Trace option is set to EXPORT inlconfig, the following signals will be output from the
LX8380: DCLK, PCST, and TPC. These are described in more detail in the following subsections.

The DCLK output is used to synchronize the probe with the LX8380’s core clock (SYSCLK).

The PCST (PC Trace Status) signals are used to indicate the status of program execution. Example status
indications are sequential instruction, pipeline stall, branch, or exception.

The TPC pins output the value of the PC every time there is a change of program control.

10.2.1. PC Trace DCLK - Debug Clock

The maximum speed allowed for the Debug Clock (DCLK) output is 100MHz (as an EPI probe
requirement). As cores typically run in excess of this speed DCLK can be set to a divided down value of
SYSCLK. This is set by the DCLK N parameter inlconfig, which indicates the ratio of SYSCLK frequency
to DCLK: 1, 2, 3 or 4.

10.2.2. PC Trace PCST - Program Counter Status Trace

The Program Counter Status (PCST) output comprises N sets of 3-bit PCST values, where N is the DCLK N
parameter described in Section 10.2.1. A PCST value is generated every SYSCLK cycle. When DCLK is
slower than the LX8380’s SYSCLK, up to N PCST values are output simultaneously.

Changes in program flow caused by a context-switch are shown by the JMP PCST code. In addition, the
PCST codes for the context-switch (JMP) and its branch-delay slot (SEQ) are switched so that the branch-
delay slot will be shown first, and any subsequent delay due to no context being ready is shown by the STL
(stall) PCST code. This causes the following PCST output:

Case1: Context Switch to immediate dispatch of another context:

Case2: Context Switch with no ready context

cntx PCST
1 foo1a # SEQ
1 csw # SEQ
1 foo1b # JMP
2 foo2a # SEQ/JMP/EXP
2 foo2b # ...

cntx PCST
1 foo1a # SEQ
1 csw # SEQ
1 foo1b # STL
* nvld # STL
... # JMP
2 foo2a # SEQ/JMP/EXP
2 foo2b # SEQ

122 Lexra Proprietary & Confidential Revision 1.4

Section 10. EJTAG Debug LX8380

10.2.3. PC Trace TPC - Target Program Counter

The bus width of the Target Program Counter (TPC) output is user configured inlconfig via the “M”
parameter to be one of 1, 2, 4 or 8 bits. When change in program flow occurs the current PC value is driven on
the TPC output. As the PC is 32-bits wide, the number of TPC pins affects how quickly the PC is sent. For
example, if the TPC is 4 bits wide the PC will take 8 DCLK cycles to be sent. If another change in flow
occurs while the PC of the previous change is being transmitted, the new PC will be sent and the remainder of
the previous PC will be lost unless the processor is in single-step mode. When an exception occurs, TPC also
indicates the exception type with either 3 or 4 bits depending on whether or not vectored interrupts are
present. This is described in more detail in Section 10.2.5.

The TDO output is used for the least significant bit of TPC (or the only bit if “M” is set to 1 vialconfig).

10.2.4. Single-Processor PC Trace Pinout

Table 46: Single-Processor PC Trace Pinout.

Table 47: Single-Processor PC Trace AC Characteristics 1

10.2.5. Vectored Interrupts and PC Trace

The EJTAG specification states that PC Trace provides a 3-bit code on the TPC output when an exception
occurs (the PCST pins give the EXP code). In order to distinguish between the eight vectored interrupts in the
LX8380 from all other exceptions, the LX8380 employs a 4-bit code.

For all exceptions other than vectored interrupts, the most significant bit of the 4-bit code is zero and the

Signal Name I/O Description

JPT_TPC_DR
M bits

O/P The PC value is output on these pins when a PC-discontinuity occursa

a. TPC[0] is multiplexed with TDO in the single-processor PC Trace solution.

JPT_PCST_DR
N*3 bits

O/P PC Trace Status: Outputs current instruction type every DCLK

JPT_DCLK O/P PCST and TPC clock. Frequency determined as a fraction of SYSCLK
via the N parameter. Maximum frequency of DCLK is 100MHz.

Signal Parameter Min Max Unit

JTAG_DCLK Frequency DC 100 MHz

DCLK High Time 4 ns

Low Time 4 ns

TPC Setup to DCLK falling edge at probe 0 ns

Hold after DCLK falling edge 4 ns

PCST Setup to DCLK falling edge at probe 0 ns

Hold after DCLK falling edge 4 ns

1. Based on EPI Interface Specifications for MAJICTM and MAJICPLUS TM

Revision 1.4 Lexra Proprietary & Confidential 123

LX8380 Section 10. EJTAG Debug

remaining 3-bits are the standard 3-bit code. Note that this includes the standard software and hardware
interrupts numbered 0 through 7.

For vectored interrupts, the most significant bit is always 1. The 4-bit code is simply the number of the
vectored interrupt (from 8 through 15) being taken.

Since the target of the vectored interrupt is determined by the contents of the INTVEC register, the debug
software which monitors the EJTAG PC Trace codes must be aware of the contents of this register in order to
trace the code after the vectored interrupt is taken.

For probes that do not support a 4-bit exception code, the LX8380 can be configured via the
EJTAG_XV_BITS lconfig option to use only the 3-bit standard codes. In that case, if a vectored interrupt is
taken, the 3-bit code for RESET will be presented.

10.2.6. Demultiplexing of TDO and TDI During PC Trace

Normally, EJTAG TDI and TDO are multiplexed with the debug interrupt (DINT) and TPC[0] when in PC
Trace mode. This reduces the number of pins required by PC Trace, but prevents any access to EJTAG
registers during PC Trace.

To allow access to EJTAG registers during PC Trace, and to facilitate PC Trace in multiprocessor
environments, thelconfig option JTAG_TRST_IS_TPC=YES causes TDI and TDO to be de-multiplexed
such that TRST is used as TPC[0] and DINT is generated via EJTAG registers.

10.3. Data Break Exceptions for LX8380

The existing EJTAG data match architecture does not allow matches for some of the transaction types in the
LX8380. This is described in more detail below.

10.3.1. Data Break Data Matches on LBus Split Transactions

Data break matches (address and/or data) on LBus split transactions are not supported. Such transactions are
generated by any context-switch instruction (*.CSW instructions).

10.3.2. Data Breaks on Write Descriptor Accesses

Data breaks on the address or data of write descriptor (all WD.* instructions) accesses are not supported.

10.3.3. Support for the Load-Twin Instruction

Data matches on the Load-Twin instruction are supported. The 32-bit entry in the Data Value Break register
will be compared to both halves of the 64-bit data returned by this instruction. Therefore any masking of the
data byte lanes must be copied from bits 7:4 (Byte Lane Mask[3:0]) to bits 11:8 in the Data Break Control
register to ensure the same mask is applied across both words returned.

124 Lexra Proprietary & Confidential Revision 1.4

Section 10. EJTAG Debug LX8380

Revision 1.4 Lexra Proprietary & Confidential 125

LX8380 Appendix A. Instruction Formats

Appendix A.Instruction Formats

This appendix documents the LX8380 instruction encodings that are not included in the standard MIPS-I
(R2000/R3000) instruction set.

A.1. Major Opcodes

Table 48: Major Opcode Instruction Formats

Table 49: Major Opcode Bit Encodings

31 26 25 21 20 16 15 6

Assembler
Mnemonic

Major
Opcode rS rT Immediate

CACHE CACHE base op offset

user defined CE1IMM rS rT user defined

6 5 5 16

Inst[28:26]

Inst[31:29] 0 1 2 3 4 5 6 7

0 SPECIAL

1

2

3 CE1IMM CE1IMM CE1IMM CE1IMM SPECIAL2 LEXOP2

4

5 CACHE

6

7 LEXOP

126 Lexra Proprietary & Confidential Revision 1.4

Appendix A. Instruction Formats LX8380

A.2. LEXOP2 Instructions

Table 50: LEXOP2 Load Instruction Formats

Table 51: LEXOP2 Write Descriptor Instruction Formats

31 26 25 21 20 16 15 6 5 0

Assembler
Mnemonic

LEXOP2
011 110 rS rT Immediate

LEXOP2
Subop

LTW LEXOP2 rS rT-even, 0 displacement/8 LTW

LW.CSW LEXOP2 base rt displacement/4 LWC

LT.CSW LEXOP2 base rt-even, 0 displacement/8 LTC

LQ.CSW LEXOP2 base rt-quad, 00 displacement/16 LQC

6 5 5 10 6

base, rT Selects general register r0 - r31.
rT-even Selects general register even-odd pair r0/r1, r2/r3 ... r30/r31.
rt-quad Selects general register quad r0/r1/r2/r3 ... r28/r29/r30/r31.
displacement Signed 2s-complement number in bytes.

31 26 25 21 20 16 15 11 10 6 5 0

Assembler
Mnemonic

LEXOP2
011 110 rs rt rd deviceID

Lexra
SUBOP

WD LEXOP2 rs rt 0 deviceID WD

WD.CSW LEXOP2 rs rt 0 deviceID WDC

WDLW.CSW LEXOP2 rs rt rd deviceID WDLWC

WDLT.CSW LEXOP2 rs rt rd-even,0 deviceID WDLTC

WDLQ.CSW LEXOP2 rs rt rd-quad,00 deviceID WDLQC

6 5 5 5 5 6

rs, rt, rd Selects general register r0 - r31.
rd-even Selects general register even-odd pair r0/r1, r2/r3 ... r30/r31.
rt-quad Selects general register quad r0/r1/r2/r3 ... r28/r29/r30/r31.
deviceID indicates bits 7:3 of system device address.

Revision 1.4 Lexra Proprietary & Confidential 127

LX8380 Appendix A. Instruction Formats

Table 52: LEXOP2 Context, Checksum and Bit Field Formats

31 26 25 21 20 16 15 11 10 6 5 0

Assembler
Mnemonic

LEXOP2
011 110 rs rt rd 0

Lexra
SUBOP

MYCX LEXOP2 0 0 rd 0 MYCX

POSTCX LEXOP2 rs rt 0 0 POSTCX

CSW LEXOP2 rs 0 0 0 CSW

EXTIV LEXOP2 rs rt rd 0 EXTIV

INSV LEXOP2 rs rt rd 0 INSV

ACS2 LEXOP2 rs rt rd 0 ACS2

MSB LEXOP2 rs rt rd 0 MSB

JOR LEXOP2 rs rt 0 0 JOR

6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

Assembler
Mnemonic

LEXOP2
011 110 rs rt width

keysize/
offset

Lexra
SUBOP

SETI LEXOP2 rs rt width offset SETI

CLRI LEXOP2 rs rt width offset CLRI

EXTII LEXOP2 width rt rd offset EXTII

INSI LEXOP2 rs rt rd offset INSI

HASH LEXOP2 rs 0 rd keysize HASH

6 5 5 5 5 6

rs, rt, rd Selects general register r0 - r31.
width a 5-bit encoding of the width parameter modulo 32. (i.e. the value 32

is represented as 0).
offset a 5-bit encoding of the offset parameter in the range 0-31.
keysize a 5-bit encoding of the keysize parameter in the range 4-24.

128 Lexra Proprietary & Confidential Revision 1.4

Appendix A. Instruction Formats LX8380

Table 53: Cross Context Move Format

Table 54: LEXOP2 Subop Bit Encodings

31 26 25 21 20 16 15 11 10 6 5 0

Assembler
Mnemonic

LEXOP2
011 110 0 rt/gt/ct rd/gd/cd 0

Lexra
SUBOP

MFCXG LEXOP2 0 gt rd 0 MFCXG

MTCXG LEXOP2 0 rt gd 0 MTCXG

MFCXC LEXOP2 0 ct rd 0 MFCXC

MTCXC LEXOP2 0 rt cd 0 MTCXC

6 5 5 5 5 6

rt, rd Selects general register r0 - r31 in the current context.
gt, gd Selects general register r0 - r31 in the context specified by MOVECX.
ct, cd Selects context register in the context specified by MOVECX:

00000 = CXSTATUS
00001 = CXPC
others = reserved

Inst[2:0]

Inst[5:3] 0 1 2 3 4 5 6 7

0 HASH SETI ACS2 INSV INSI

1 JOR MSB CLRI EXTIV EXTII

2

3

4 MYCX MFCXG MTCXG

5 POSTCX MFCXC MTCXC

6 CSW LQC WDC WDLQC LTC LWC WDLTC WDLWC

7 WD LTW

Revision 1.4 Lexra Proprietary & Confidential 129

LX8380 Appendix A. Instruction Formats

A.3. COP0 Instructions

Table 55: COP0 Instruction Formats

These encodings are variants of the standard MTC0 and MFC0 instructions that allow access to the Lexra
Coprocessor 0 registers listed below. As with any CP0 instruction, a Coprocessor Unusable Exception is
taken in User mode if the Cu0 bit is 0 in the CP0 Status register when these instructions are executed.

Table 56: COP0 Subop Bit Encodings

31 26 25 21 20 16 15 11 10 6 5 0

Assembler
Mnemonic

COP0
010 000 rS rT rD 0

COP0
Subop

MFLXC0 COP0 MFLX
00011

rS rD 00000 LXC0

MTLXC0 COP0 MTLX
00111

rS rD 00000 LXC0

DERET COP0 00000 00000 00000 00000 DERET

6 5 5 5 11

rT Selects general register r0 - r31.
rD Selects Lexra Coprocessor 0 register:

00000 ESTATUS
00001 ECAUSE
00010 INTVEC
00011 CVSTAG (for Lexra diagnostic purposes only)
00100 MOVECX
00101 reserved
0011x reserved
01xxx reserved
1xxxx reserved

Inst[2:0]

Inst[5:3] 0 1 2 3 4 5 6 7

0 LXC0

1

2

3 DERET

4

5

6

7

130 Lexra Proprietary & Confidential Revision 1.4

Appendix A. Instruction Formats LX8380

A.4. SPECIAL Instructions

Table 57: SPECIAL Instruction Formats

Table 58: SPECIAL Subop Bit Encodings

Table 59: SPECIAL2 Instruction Formats

31 26 25 21 20 16 15 11 10 6 5 0

Assembler
Mnemonic

SPECIAL
000 000 Copz rs rt rd 0

SPECIAL
Subop

MOVN SPECIAL rS rT rD 00000 MOVN

MOVZ SPECIAL rS rT rD 00000 MOVZ

user defined SPECIAL rS rT rD 00000 CE1REG

6 5 5 5 5 6

Inst[2:0]

Inst[5:3] 0 1 2 3 4 5 6 7

0

1 MOVZ MOVN

2

3

4

5

6

7 CE1REG CE1REG CE1REG CE1REG CE1REG CE1REG

31 26 25 21 20 16 15 11 10 6 5 0

Assembler
Mnemonic

SPECIAL2
000 000 Copz rs rt 0 0

SPECIAL2
Subop

SDBBP SPECIAL2 00000 00000 00000 00000 SDBBP

6 5 5 5 5 6

Revision 1.4 Lexra Proprietary & Confidential 131

LX8380 Appendix A. Instruction Formats

Table 60: SPECIAL2 Subop Bit Encodings

Inst[2:0]

Inst[5:3] 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7 SDBBP

132 Lexra Proprietary & Confidential Revision 1.4

Appendix A. Instruction Formats LX8380

Revision 1.4 Lexra Proprietary & Confidential 133

LX8380 Appendix B. Lconfig Forms

Appendix B.Lconfig Forms

B.1. Configuration Options for the LX8380 Processor

This section provides a summary of the configuration options available withlconfig. Refer tolconfig forms
for a detailed description of these form options.

Table 61: Configuration Options

Lconfig Option Description

CBI_WBUF CBUS Interface write buffer depth

CE0 custom engine 0

CE1 custom engine 1

CLOCK_BUFFERS clock buffers at top-level module

CONTEXTS Number of contexts (threads) in the processor

COP1 coprocessor interface 1

COP2 coprocessor interface 2

COP3 coprocessor interface 3 (BMC)

DCACHE data cache size

DCACHE_POLICY data cache writeback/writethrough policy selection

DMEM local scratch pad data RAM

EJTAG EJTAG Debug Support

EJTAG_DATA_BREAK Number of data breaks to be compiled

EJTAG_DCLK_N EJTAG PCTrace DCLK N parameter

EJTAG_INST_BREAK Number of instruction breaks to be compiled

EJTAG_TPC_M EJTAG PCTrace TPC M parameter

EJTAG_XV_BITS EJTAG PCTrace number of Exception Vector bits

ICACHE instruction cache size

IMEM local instruction RAM with line valid bits

JTAG Internal JTAG Tap controller with EJTAG support

JTAG_TRST_IS_TPC TRST pin is TPC out, instead of TDO/TPC mux

LBC_RBUF Lexra Bus Controller read buffer depth

LBC_RDBYPASS Lexra Bus Controller read bypass enable

134 Lexra Proprietary & Confidential Revision 1.4

Appendix B. Lconfig Forms LX8380

LBC_SYNC_MODE LBC synchronous/asynchronous selection

LINE_SIZE cache line size, in words

DMEM_WIDTH local scratch pad data memory width

LMI_RANGE_SOURCE source of LMI address ranges

MEM_FIRST_WORD cache line fill first word

MEM_LINE_ORDER cache line fill beat ordering

MMU Memory Management Unit implementation

MMU_PAGE_SIZE memory page size

PC_TRACE EJTAG PC trace pins

PRODUCT Lexra Processor name

REGFILE_TECH register file technology

RESET_BUFFERS reset buffers at top-level module

RESET_TYPE flip-flop reset method

SCAN_INSERT Controls scan insertion and synthesis

SCAN_MIX_CLOCKS scan chains can cross clock boundaries

SCAN_NUM_CHAINS number of scan chains

SCAN_SCL scan collar insertion on RAM interfaces

SEN_BUFFERS scan enable buffering

SEN_DIST scan enable distribution method

SYSTEM_INTERFACE system bus interface type

TECHNOLOGY identifies target technology

THREAD_SCHEDULER location of thread scheduler

TLB_ENTRIES number of entries in Translation Lookaside Buffer

WDESC_ADDR Write Descriptor upper address bits

WRITETHROUGH_RANGE writethrough range for writeback data cache

Lconfig Option Description

Revision 1.4 Lexra Proprietary & Confidential 135

LX8380 Appendix C. Port Descriptions

Appendix C.Port Descriptions

Table 62 shows the possible port connections for the top level module of the LX8380 processor, known as
lx2. The actual lx2 ports that are present depends uponlconfig settings.

Port names that include a trailing _N or intermediate _N_ indicate active low signals. All other signals are
active high unless otherwise indicated.

All input ports must be connected to valid logic-level sources.

The information in the table’s Timing column indicates the point within a cycle when the signal is stable, in
terms of percent. The Timing column also includes parenthetical references to these notes:

1. Clocked in the JTAG_CLOCK domain.

2. Clocked in the BUSCLK domain if is asynchronous. Otherwise, clocked in the SYSCLK
domain.

3. Does not require a constraint (e.g., a clock).

4. A constant that is treated as a false path for timing analysis. These inputs must not change after
the processor is taken out of reset.

5. Timing is specified with a symbol in techvars.scr script (e.g. RAM timing).

6. A test-related input or output that is treated as false path for timing analysis. Such inputs must
not change during normal at-speed operation.

7. An asynchronous input.

If no clock domain is specified, the signal is clocked in the SYSCLK domain.

For single bit signals, the signal name and signal description indicate the action or function when the signal is
in the active state.

Table 62: LX8380 Processor Port Summary

Port Name I/O Timing Description

Clocking, Reset, Interrupts and Control

SYSCLK input (3) Processor clock.

BUSCLK input (3) Bus clock, if processor is configured with
async LBC.

ResetN input 10% Warm reset (or reset "button"), active low.

CResetN input 10% Cold reset (or power on), active low.

136 Lexra Proprietary & Confidential Revision 1.4

Appendix C. Port Descriptions LX8380

RESET_D1_R_N input 30% SYSCLK domain reset combination of ResetN,
CResetN, EJTAG.

RESET_D1_BR_N input 30% BUSCLK domain reset combination of ResetN,
CResetN, EJTAG.

RESET_PWRON_C1_N input 30% Power on reset copy for JTAG.

RESET_PWRON_D1_LR_N input 30% SYSCLK domain power on reset for EJTAG.

RESET_D1_R_N_O output 30% SYSCLK domain reset combination of ResetN,
CResetN, EJTAG.

RESET_D1_BR_N_O output 30%, (2) BUSCLK domain reset combination of ResetN,
CResetN, EJTAG.

RESET_PWRON_C1_N_O output 30% Power on reset copy for JTAG.

RESET_PWRON_D1_LR_N_O output 30% SYSCLK domain power on reset for EJTAG.

INTREQ_N[15:2] input (7) Interrupt requests (level sensitive, active low).

EXT_HALT_P input 50% External stall line. Tie to 0 if not used.
1 - stall pipeline next cycle
0 - advance pipeline if no internal stalls

Configuration

CFG_TLB_DISABLE input (4) Disable TLB mappings even if the TLB is
present.

CFG_HLENABLE input (4) Strap to one to enable internal HI/LO registers.

CFG_MEMSEQUENTIAL input (4) Strap to one if line reads return words in
sequential order, zero if interleave order.

CFG_MEMZEROFIRST input (4) Strap to one if line reads return word zero first,
zero if desired word first.

CFG_LBCWBDISABLE input (4) Strap to one to disable read bypass of LBC
write buffer, zero to allow read bypass.

CFG_PROCNUM[7:0] input (4) Strapped with processor number.

CFG_EJTNMINUS1[1:0] input (4) Strap with EJTAG DCLK N minus 1 configura-
tion (0-3=1-4).

CFG_EJTMLOG2[1:0] input (4) Strap with EJTAG M log2 (0-3=1,2,4,8) config-
uration.

CFG_EJT3BITXVTPC input (4) Strap with ETJAG 3-bit TPC configuration.

CFG_EJTBIT0M16 input (4) Strap with EJTAG PC bit0 in TPC configura-
tion.

CFG_DWBASE[31:10] input 30% Strapped with DMEM base address configura-
tion value.

CFG_DWTOP[23:10] input 30% Strapped with DMEM top address configura-
tion value.

CFG_IWBASE[31:10] input 30% Strapped with IMEM base address configura-
tion value.

Port Name I/O Timing Description

Revision 1.4 Lexra Proprietary & Confidential 137

LX8380 Appendix C. Port Descriptions

CFG_IWTOP[`23:10] input 30% Strapped with IMEM top address configuration
value.

CFG_DWDISW input (4) Strap to one to disable processor DMEM
writes. Must be zero for LX8380.

Test and Debug

JTAG_RESET_O output 20%, (1) JTAG is in TEST-LOGIC-RESET state, active
low.

JTAG_RESET input (6) JTAG is in TEST-LOGIC-RESET state, active
low.

TAP_RESET_N_O output 20%, (1) TAP controller reset.

TAP_RESET_N input (6) TAP controller reset.

JTAG_TDO_NR output 50%, (1) Test data out, active low.

JTAG_TDI input 60%, (1) Test data in.

JTAG_TMS input 60%, (1) Test mode select.

JTAG_CLOCK input (3) Test clock.

JTAG_TRST_N input (6) Test reset.

JTAG_CAPTURE output 20%, (1) JTAG is in DATA REGISTER CAPTURE state

JTAG_SCANIN output 50%, (1) Scan input to chain

JTAG_SCANOUT input 50%, (1) Scan output from chain

JTAG_IR[4:0] output 20%, (1) Contents of INSTRUCTION REGISTER

JTAG_SHIFT_IR output 20%, (1) JTAG is in SHIFT INSTRUCTION REGISTER
state

JTAG_SHIFT_DR output 20%, (1) JTAG is in SHIFT DATA REGISTER state

JTAG_RUNTEST output 20%, (1) JTAG is in RUN-TEST state

JTAG_UPDATE output 20%, (1) JTAG is in DATA REGISTER UPDATE state

EJC_ECRPROBEEN_R output 30% One indicates EJTAG probe is active.

JPT_PCST_DR[M-1:0] output 30% EJTAG PC trace status; M= 1, 2, 4 or 8.

JPT_TPC_DR(N*3-1:0] output 30% EJTAG PC trace value, N= 1, 2, 3 or 4.

JPT_DCLK output (3) EJTAG PC trace clock.

SEN input (6) Scan enable, active high.

TMODE input (6) Test mode, active high.

SIN[<k>:0] input (6) Scan Input. <k> can range from 7 to 0.

SOUT[<k>:0] output (6) Scan Output. <k> can range from 7 to 0.

Port Name I/O Timing Description

138 Lexra Proprietary & Confidential Revision 1.4

Appendix C. Port Descriptions LX8380

Data RAM DMA Access

DMADW_RCLK input (3) Data RAM DMA clock.

DMADW_DATAINDEX[17:4] input (5) Data RAM DMA address (max size).

DMADW_DATARD[63:0] output (5) Data RAM DMA read data (128-bit interface is
optional).

DMADW_DATAWR[63:0] input (5) Data RAM DMA write data (128-bit interface is
optional).

DMADW_DATACS input (5) Data RAM DMA chip select.

DMADW_DATACSN input (5) Data RAM DMA chip select, active low.

DMADW_DATARE input (5) Data RAM DMA read enable.

DMADW_DATAREN input (5) Data RAM DMA read enable, active low.

DMADW_DATAWE[<k>:0] input (5) Data RAM DMA write enable, where <k> is 3
for word write granularity, 15 for byte write
granularity.

DMADW_DATAWEN[<k>:0] input (5) Data RAM DMA write enable, active low,
where <k> is 3 for word write granularity, 15 for
byte write granularity.

LBC Interface (to LBus)

LAddrO[31:0] output 20%, (2) Address.

LCmdO[8:0] output 20%, (2) Output command.

LDataO[63:0] output 20%, (2) Output data.

LDataI[63:0] input 50%, (2) Input data.

LIrdyO output 20%, (2) LBC initiator ready.

LIrdyI input 30%, (2) System initiator ready.

LFrameO output 20%, (2) LBC transaction frame.

LFrameI input 30%, (2) System transaction frame.

LSel input 30%, (2) System slave select.

LTrdyI input 30%, (2) System target ready.

LGTidO[15:0] output (2), 20% LBC global thread ID.

LId output 20%, (2) Instruction/data.

LUc output 20%, (2) 1 - Uncacheable transfer.
0 - Cachable transfer.

LCoe[9:0] output 20%, (2) Command output enable. Identical copies are
provided to relieve the fanout.

LToe output 20%, (2) Transaction output enable.

LDoe[7:0] output 20%, (2) Data output enable. Identical copies are pro-
vided to relieve the fanout.

Port Name I/O Timing Description

Revision 1.4 Lexra Proprietary & Confidential 139

LX8380 Appendix C. Port Descriptions

LReq output 50%, (2) Bus request.

LGnt input 30%, (2) Bus grant.

Coprocessor Interface <z=1,2>

Czcondin input 80% Cop branch flag.

Czrd_addr[4:0] output 50% Cop read address.

Czrd_cntx[2:0] output 40% Cop read context number

Czrhold output 45% Cop hold condition, one stalls coprocessor.

Czrd_gen output 50% Cop general register read command.

Czrd_con output 50% Cop control register read command.

Czrd_data[31:0] input 80% Cop read data.

Czwr_addr[4:0] output 20% Cop write address.

Czwr_cntx[2:0] output 30% Cop write context number

Czwr_gen output 20% Cop general register write command.

Czwr_con output 20% Cop control write address command.

Czwr_data[31:0] output 30% Cop write data.

Czinvld_M output 60% Cop invalid instruction flag, one indicates
invalid instruction in M stage.

Czxcpn_M output 60% Cop exception flag, one indicates exception in
M stage.

Custom Engine Interface

CEI_CE1HOLD output 45% CPU is halting Custom Engine.

CEI_CE1INVLD_M output 40% Instruction is not valid, M stage.

CEI_CE1INVLDP_S_R output 30% Instruction is not valid, S stage.

CEI_XCPN_M_C1 output 40% CPU reports exception.

CEI_CE1OP_S_R[11:0] output 30% Custom Engine op code.

CEI_INSTM32_S_R_C1_N output 30% One indicates 32-bit instruction mode; zero
indicates 16-bit instruction mode.

CEI_CE1AOP_E_R[31:0] output 35% A operand.

CEI_CE1BOP_E_R[31:0] output 35% B operand.

CE1_RES_E[31:0] input 45% Result from Custom Engine.

CE1_SEL_E_R input 30% One indicates Custom Engine opcode is
present in E stage.

CE1_HALT_E_R[2:0] input 20% Custom Engine stalls processor by driving to
ones, allows processor to run by driving to
zeros. (Copies must be supplied from multiple
registers to meet timing requirements.)

Port Name I/O Timing Description

140 Lexra Proprietary & Confidential Revision 1.4

Appendix C. Port Descriptions LX8380

CBUS Interface

CBUS_YREQO output 20% 0 - no request present,1 - request present.

CBUS_YADDRO[31:0] output 20% Address

CBUS_YREADO output 20% 1=Read, 0=Write

CBUS_YSZO[3:0] output 20% Transfer size
 4’b1000 - byte
 4’b1001 - 2 bytes
 4’b1011 - word
 4’b1101 - 2 words
 4’b0000 - 4 words

CBUS_YLINEO output 20% 1=line access, 0=single access.

CBUS_YDATAO[63:0] output 20% Write Data

CBUS_YSPLTO output 20% 1=Split, 0=normal transaction.

CBUS_YLTIDO[3:0] output 20% Local thread ID

CBUS_YUCO output 20% 1=uncached, 0=cached access.

CBUS_YSRCO[3:0] output 20% transaction source (within LX8380):
 4’b0001 Instruction Cache
 4’b0010 Data Cache or EJTAG DMA write
 4’b0100 EJTAG DMA read
 4’b1000 BMC

CBUS_YDBUSYO output 20% 1 - LX8380 is not ready to receive data for a
Data Read or Data Split Read. Any return
read data with VALTYPE of Data Read or
Data Split Read will be ignored by the
LX8380. External logic must hold such data
CBUS_YDBUSYO is de-asserted.

0 - LX8380 is ready to receive data.

CBUS_YBUSYI input 80% 1 - External logic cannot accept request. Exter-
nal logic ignores any current request. 0 -
External logic is ready to accept a request.

CBUS_YDATAI[63:0] input 80% Read Data.

CBUS_YLTIDI[3:0] input 80% Context associated with Read Data.

CBUS_YVALTYPEI[3:0] input 80% Indicates valid read data of a certain type:
 4’b0000 No valid read data
 4’b0001 Instruction Cache
 4’b0010 Data Cache
 4’b0100 EJTAG DMA
 4’b1000 BMC

CBUS_YSPLTSZI[2:0] input 80% Size of split Read Data beat:
 3’b000 - 1 byte
 3’b001 - 2 bytes
 3’b011 - 1 word
 3’b100 - 2 words

CBUS_YIDLEI input 80% Indicates external CBUS_Y device has no
pending read or write transactions.

Port Name I/O Timing Description

Revision 1.4 Lexra Proprietary & Confidential 141

LX8380 Appendix C. Port Descriptions

Event Control and Thread Scheduling

EXT_CLEARWTEVNT_R
[<n>*8-1:0]

input 30% Clear status wait event bits, where <n> is the
number of contexts.

CX_STUSTHWAIT_R [<n>-1:0] output 30% Bits set to one indicate which contexts are
waiting for events, where <n> is the number of
contexts.

CX_THREADACTV_R[<n>-1:0] output 30% A bit set one indicates which context (if any) is
active, where <n> is the number of contexts.

EXT_NXTCNTX_P_R[2:0] input 30% External Scheduler Next Context.

EXT_NEXTCNTXRDY_P_R input 30% External Scheduler Next Context is ready.

CX_STUSTHPRIO_R[<n>*3-1:0] output 30% Thread priority status.

Port Name I/O Timing Description

142 Lexra Proprietary & Confidential Revision 1.4

Appendix C. Port Descriptions LX8380

Revision 1.4 Lexra Proprietary & Confidential 143

LX8380 Appendix D. Pipeline Stalls

Appendix D.Pipeline Stalls

This appendix documents the stall conditions that may arise in the LX8380.

D.1. Stall Definitions

Issue stall: an invalid instruction enters each pipe, while any other valid instructions in the pipe advance.

Pipeline stall: All instructions in the pipe stay in the same stage, and do not advance.

Stall: if not otherwise qualified, means Pipeline stall.

D.2. Instruction Groupings

Table 63: Instruction Groupings For Stall Definition

D.3. Non-Sequential Program Flow Issue Stalls

M-I JR,JALR

Two issue stalls after the delay slot instruction.

M-I J, JAL(X), and M-I taken branches:

Group Name Instructions In Group

M-I-LoadStore LB, LH, LW, LBU, LHU, LWC1, LWC2, LWC3
SB, SH, SW, SWC1, SWC2, SWC3

M-I-Mac MULT(U), DIV(U), MFHI, MFLO, MTHI, MTLO
MADH, MADL, MAZH, MAZL
MSBH, MSBL, MSZH, MSZL

M-I-Control J, JAL(X), JR, JALR
BLTZAL, BGEZAL (linked branches)
SYSCALL, BREAK
All COPz (MFCz, CFCz, MTCz, CTCz, BCFz, BCTz, RFE)
LWCz, SWCz (also in LoadStore group)
MTLXC0, MFLXC0 (Lexra-specific)

M-I-UnlinkedBranch BEQ, BNE, BLEZ, BGTZ, BLTZ, BGEZ

M-I-General All remaining M-I instructions

MIV-CMove MOVZ, MOVN

NVX-LoadStore LTW

EJTAG-Control DERET, SDBBP

144 Lexra Proprietary & Confidential Revision 1.4

Appendix D. Pipeline Stalls LX8380

NO stall cycles after the delay slot instruction.

M-I not-taken branches

Two issue stalls after the delay slot instruction.

The branch rules are a consequence of the fact that all branches are predicted to be taken.

D.4. Load/Store Rules

Load-Use A-Stage Single Cycle Pipeline Stall:

After a Load instruction to a target register, an instruction which follows the load in the pipeline by
two cycles and uses that target register of the load will pipeline stall for one cycle.

Store-Load Data RAM Access Stall:

A Load instruction which follows a Store instruction by two cycles always causes a one-cycle stall.

Note: This stall only applies if the Store instruction hits in the data cache.

Store-Store Tag RAM Access Stall:

A second Store instruction which follows a first Store instruction by two CYCLEs causes a one-
cycle stall IF the first Store is to a previously Clean line of a Write-Back cache.

Note: This stall only applies if the first Store instruction hits in the data cache.

Store-Load Data Read-After-Write Stall:

A Load instruction which follows a Store instruction by one CYCLE causes a two-cycle stall IF the
Load accesses data at the same word address as the Store.

For Twinword load instructions, either of the load word addresses may match the Store word
address.

Store-Store Tag-DirtyBit Read-After-Write:

No stall.

Hardware detects the case of back-to-back stores to the same line and eliminates any replay of the
second store to access the Tag-DirtyBit.

Store-Load Tag Invalidate Tag RAM Access Stall:

A Store or Load instruction that follows by two CYCLEs an uncached Store or Load instruction
that causes a TAG invalidate causes a one-cycle stall.

Store-Load Tag Invalidate Read-After-Write Stall:

A Store or Load instruction that follows by one CYCLE an uncached Store or Load instruction that
causes a TAG invalidate causes a two-cycle stall, IF the second instruction accesses data in the same

Revision 1.4 Lexra Proprietary & Confidential 145

LX8380 Appendix D. Pipeline Stalls

cache line as the first instruction.

D.5. Mac Ops interlock matrix

The Mac eliminates all programming hazards between Mac instructions by stalling the pipeline as necessary.
This is done both to avoid resource conflicts as well as to wait for results of a first instruction that is needed by
a second instruction.

The following table indicates the number of cycles that must be inserted between the first indicated
instruction and the second. A zero (or dash) indicates that the instructions can issue back-to-back to the Mac
pipe with no stalls. A non-zero number indicates the number of stall cycles that will occur if the instructions
are issued in consecutive cycles. These stall cycles are available for any other non-Mac instructions, but
should NOT be filled with NOPs since that would only increase the code footprint without improving
performance.

D.6. MVCz Stall

The coprocessor move instructions (M-I: MTCz, CTCz, LWCz, MFCz, CFCz) are always followed by two
cycle issue stalls.

The variants of coprocessor move instructions (MTLXC0, MFLXC0) are always followed by two cycle issue
stalls.

The instructions TLBP and TLBR, which update Coprocessor 0 registers, are always followed by two cycle
issue stalls.

D.7. TLBW Stall

The TLB write instructions (TLBWI, TLBWR) are always followed by a one cycle issue stall.

D.8. MOVECX Stall

In addition to its MVCz stall, a MTLXC0 instruction to the MOVECX register is followed by two more issue
stalls, for a total of four issue stalls.

D.9. MMU Stalls

ITLB Stall:

When the program jumps, branches, or increments from the most recently used page to another
page in the ITLB, a single cycle stall is incurred.

When the program jumps, branches or increments to a page not in the ITLB, a four-cycle stall is
incurred if the target VPN is mapped, one-cycle if the target VPN is unmapped.

If the target VPN is not in the joint TLB, an exception is recognized when the instruction reaches
the M-stage.

A TLBWI/TLBWR instruction invalidates any ITLB entry corresponding to the over-written joint
TLB entry.

ITLB Issue Stall:

When an ITLB stall occurs due to incrementing across a page boundary, AND there is any of the

146 Lexra Proprietary & Confidential Revision 1.4

Appendix D. Pipeline Stalls LX8380

following instructions found anywhere in the last doubleword of the page, then there is one issue
stall in addition to the ITLB stalls:

M-I branch of any kind
M-I J, JAL(X)
EJTAG DERET

DTLB Stall:

When a Load or Store uses a base register that is in the DTLB and hits a VPN that is in the DTLB,
there is no stall incurred.

When a Load or Store uses a base register that is in the DTLB but does not hit a VPN that is in the
DTLB, a two-cycle stall is incurred if the VPN is mapped, one-cycle if the VPN is unmapped.

When a Load or Store uses a base register that is not in the DTLB, a three-cycle stall is incurred if
the VPN is mapped, two-cycles if the VPN is unmapped.

Notes on DTLB entry maintenance:

1) A TLBWI/TLBWR instruction invalidates any DTLB entry corresponding to the over-written
joint TLB entry.

2) Any instruction that updates a base register invalidates (on the S->E transition) DTLB entries
using that register.

3) A DTLB entry that is invalidated per item (2) is resurrected (on the E->A transition) with the
new base register value if the invalidating instruction is one of the following:

4) When a new DTLB entry is created for a VPN, the replacement policy is FIFO. Bubbles in the
FIFO that occurred because of item (2) are collapsed.

D.10. Cache Miss Stalls

Instruction Cache Miss Stall:

When an instruction cache miss occurs, the processor is stalled for the duration of the cache line fill
operation.

The number of cycles required to complete the line fill is system dependent.

Instruction Cache 2-Way Soft Miss Stall:

When a 2-way Icache is in use, a soft-miss is defined as a hit in the unpredicted way, with way
prediction defined as follows:

When not running in Lock mode, use the LRU bit.

When running in LockedDown mode, if the most recent LockedDown Icache access hit a Locked
line, then predict way 1 (the Locked way), else use the LRU bit.

When running in LockGather mode, predict way 1 (the Locked way). This prevents a “hit” (without

ADDI, ADDIU, SLTI, SLTIU, ANDI, ORI, XORI, LUI (OP[31:29] == 001)
SLL, SRL ,SRA, SLLV, SRLV, SRAV (SPECIAL+OP[5:3] == 000)
ADD, ADDU, SUB, SUBU, AND, OR, XOR, NOR (SPECIAL+OP[5:3] == 100)

Revision 1.4 Lexra Proprietary & Confidential 147

LX8380 Appendix D. Pipeline Stalls

soft-miss) on way 0, thus allowing for the invalidation of way 0 (and a fill to way 1) in that case.
Also, a “miss” is forced in LockGather mode whenever the Lock state is clear, to allow the Lock
state to be set for a way 1 hit (that was not previously locked). A “miss” is never allowed to be
“soft” in LockGather mode, which forces the fill to way 1 in the case of a way 0 hit as noted above.

A soft miss always causes a two-cycle stall.

Data cache miss stall:

When a data cache miss occurs as the result of a load instruction, the processor stalls while it waits
for the data. The data cache releases the stall condition after the required word is supplied to the
processor, even if additional words must still be filled into the data cache. However, if the processor
issues another load or store operation to the data cache while the remainder of the line fill is in
progress, the cache will again stall the processor until the line fill operation is completed.

The number of cycles required to complete the line fill is system dependent.

Evict Buffer Not-Empty Stall:

When a data access (load or store) needs to use the system bus and the Evict Buffer is not empty due
to a previous evict operation, the processor stalls while it waits for the evict buffer to empty.

D.11. Pipeline Diagrams for Non-Sequential Program Flow Issue Stalls

M-I JR, JALR:

 JR I D S E A M W
 delayslot I D S E A M W
 notvld I . . .
 notvld I . .
 target I D S E A

M-I J, JAL(X), and M-I Taken Branches:

 J I D S E A M W
 delayslot I D S E A M W
 target I D S E A M

M-I Not-Taken Branches:

 B-ntkn I D S E A M W
 delayslot I D S E A M W
 notvld I . . .
 notvld I . . .
 delay+4 I D S

Load-Use A-stage Single Cycle Pipeline Stall:

 00: lw s0,0(a0) I D S E A M
 04: addi a0,4 I D S E A A M W
 08: add s1,s0 I D S E E A M W
 0c: add t1,t2 I D S S E A M W

 RHOLD X
 DLOAD_M X

148 Lexra Proprietary & Confidential Revision 1.4

Appendix D. Pipeline Stalls LX8380

Store-Load Data RAM Access Stall:

 00: sw s0,00(a0) I D S E A M W
 04: foo I D S E A M M W
 08: lw s2,32(a0) I D S E A A M W

 RHOLD X

Store-Store Tag RAM Access Stall:

 00: sw s0,00(a0) I D S E A M W
 04: foo I D S E A M M W
 08: sw s2,32(a0) I D S E A A M W

 RHOLD X

Store-Load Data Read-After-Write Stall:

 00: sw s0,00(a0) I D S E A M W
 04: lw s2,00(a0) I D S E A A A M W

 RHOLD X X

D.12. Pipeline Diagram for Mac Ops Interlock Stall

 00: mult s0,s1 I D S E A M -
 04: lw s0,0(a0) I D S E A M M M W
 08: lw s1,0(a0) I D S E A A A M M M W
 0c: mflo v0 I D S E E E A M W
 10: sw v0,0(a1) I D S S S E A M W

 multcount(4S) 0 1 2 3 4
 RHOLD X X

D.13. Pipeline Diagram for MVCz Stall

 00: mtc0 I D S E A M W
 04: foo I d d D S E A M W
 08: foo1 I D S E A M W

D.14. Pipeline Diagram for TLBW Stall

The handler for a TLB exception can return to the offending instruction after writing a new JTLB entry with

Revision 1.4 Lexra Proprietary & Confidential 149

LX8380 Appendix D. Pipeline Stalls

the following canonical code fragment:

 00: tlbwr I D S E A M W
 04: jr I d D S E A M W
 08: rfe I D S E A M W
 0c: foo I D . .
 10: foo I . .
 tgt: I I I I I D
 ITLB-REQUEST X
 JTLB-RESPONSE X
 SELECT NEW PFN TO RAM X

The target of the JR can use (for its Ifetch) the newly created JTLB entry that is written in the W-stage. This is
due to the single issue stall after the TLBW, and the fact that the JR target address is resolved in the E-stage of
the JR. It is also true that any Data access in the target or subsequent instructions can use the newly created
JTLB entry.

D.15. Pipeline Diagrams for DTLB Stalls

Base assumption, all cases: DTLB entry exists for LW r1, 0(r2) where r2 is page aligned.

CASE 1: no stall

 00: lw r1,4(r2) I D S E A M W

 DTLB_HIT_S X

CASE 2: reg-hit, VPN-miss, VPN mapped, create new entry

 00: lw r1,-4(r2) I D S E E E A M W
 04: lw r3,-8(r2) I D S S S E A M W

 DTLB_REGHIT_S X X
 DTLB_VPNHIT_S - X

CASE 3: reg-miss, VPN mapped, create new entry

 00: lw r1,-4(r2) I D S E E E E A M W
 04: lw r3,-8(r2) I D S S S S E A M W

 DTLB_REGHIT_S - X
 DTLB_VPNHIT_S . X

CASE 4: reg-invalidate, VPN mapped

 00: lw r2,0(r2) I D S E A M W
 04: foo I D S E A M W
 04: lw r3,0(r2) I D S E E E E A M W

 DTLB_REGHIT_S -
 DTLB_VPNHIT_S .

150 Lexra Proprietary & Confidential Revision 1.4

Appendix D. Pipeline Stalls LX8380

CASE 5: reg-invalidate and resurrect, no stall

 00: addiu r2,r2,4 I D S E A M W
 04: foo I D S E A M W
 04: lw r3,0(r2) I D S E A M W

 DTLB_REGHIT_S X
 DTLB_VPNHIT_S X

CASE 6: Vector Add C=A+B, no stalls

After initialization, DTLB entries valid for C(base r1), A(base r2), B(base r3) all initially page aligned.

 00: sw r7,0(r1) I D S E A M W
 04: addiu r1,r1,4 I D S E A M W
 08: lw r5,0(r2) I D S E A M W
 0c: addiu r2,r2,4 I D S E A M W
 10: lw r6,0(r3) I D S E A M W
 14: addiu r3,r3,4 I D S E A M W
 18: bne r3,r9,00: I D S E A M W
 1c: add r7,r5,r6 I D S E A M W

 DTLB_REGHIT_S X X X
 DTLB_VPNHIT_S X X X

D.16. Pipeline Diagrams for Cache Misses

Instruction Cache Miss Stall:

 08: foo0 I D S E A A A A A A M W
 0c: foo1 I D S E E E E E E A M W
 10: foo2 I ~d . . . I D S E A M W

 RHOLD X X X X X

Instruction Cache 2-Way Soft Miss Stall:

 08: foo0 I D S E A A A M W
 0c: foo1 I D S E E E A M W
 10: foo2 I ~d I D S E A M W
 14: foo3 I D S E A M W

 RHOLD X X

Data Cache Miss Stall:

 04: lw I D S E A M W
 08: foo1 I D S E A M M M M M W
 0c: foo2 I D S E A A A A A M W

 RHOLD X X X X

Revision 1.4 Lexra Proprietary & Confidential 151

LX8380

Index

A
address translation

SMMU 31
ALU instructions 22
arbitration (LBUS) 107

B
BADVADDR register 34
BMC (Block Move Controller)

example transfer flow 116
overview 109

branch instructions 26
bus controller. See LBC
byte alignment

CBUS 79
LBUS 93

C
cache. See local memory
CAUSE register 33
CBUS

byte alignment 79
interleave order 78
protocol 81
signals 80
transaction descriptions 81
write buffer 78

CI. See coprocessor interface
conditional move instructions 25
control instructions 27
coprocessor 36
coprocessor instructions 28
coprocessor interface

attaching coprocessors 59
operations 60
pipeline 61
signals 59

CP0 (System Control Processor) 9

D
data cache. See local memory
debug interface. See EJTAG
delay slot

branch instructions 26
CAUSE register Branch Delay flag 33
coprocessor instructions 28
exceptions in branch delay slot 34
jump instructions 27

DEPC register 10
DESAVE register 10
DREG register 10

E
ECAUSE register 35
EJTAG

CP0 registers 10
overview 119
PC trace 121

signals 120
EPC register 34
ESTATUS register 35
exception processing

delay slot 34
entry and exit 34
prioritized interrupt exception vectors 36
priority list 32
registers 33

EXTIVinstructions
46

I
instruction cache. See local memory
instructions

ACS2 57, 127
ADD 22
ADDI 22
ADDIU 22
ADDU 22
ALU 22
AND 22
ANDI 22
BCzF 29
BCzT 29
BEQ 26
BGEZ 26
BGEZAL 26
BGTZ 26
BLEZ 26
BLTZ 26
BLTZAL 26
BNE 26
branch 26
BREAK 27
CACHE 68, 125
CFCz 28
CLRI 45, 127
conditional move 25
control 27
coprocessor 28
CSW 40, 127
CTCz 28
custom engine 125, 130
DERET 129
EXTII 48, 127
EXTIV 127
HASH 50, 127
INSI 49, 127
INSV 47, 127
J 27
JAL 27
JALR 27
JOR 51, 127
JR 27
jump 26
LB 24
LBU 24
LH 24

152 Lexra Proprietary & Confidential Revision 1.4

LX8380

LHU 24
LIU 23
load 24
LQ.CSW 41, 126
LT.CSW 41, 126
LTW 24, 126
LW 24
LW.CSW 40, 126
LWCz 28
MFCXC 56, 128
MFCXG 56, 128
MFCz 28
MFLXC0 129
MOVN 25, 130
MOVZ 25, 130
MSB 50, 127
MTCXC 56, 128
MTCXG 56, 128
MTCz 28
MTLXC0 29, 129
MYCX 40, 127
NOR 22
OR 22
ORI 22
POSTCX 40, 127
RFE 27
SB 24
SDBBP 130
SETI 45, 127
SH 24
SLL 23
SLLV 23
SLT 23
SLTI 23
SLTIU 23
SLTU 23
SRA 23
SRAV 23
SRL 23
SRLV 23
store 24
SUB 22
SUBU 22
SW 24
SWCz 28
SYSCALL 27
WD 42, 126
WD.CSW 42, 126
WDLQ.CSW 44, 126
WDLT.CSW 43, 126
WDLW.CSW 43, 126
XOR 22
XORI 22

interleave order
CBUS 78
LBUS 89

interrupts
non-prioritized 33
prioritized 35
prioritized interrupt exception vectors 36

INTVEC register 36

J
jump instructions 26

K
kseg0 31
kseg1 31
kseg2 31
kuseg 31

L
LBC (Lexra bus controller)

commands issued 95
read buffer 95
signals 106

LBUS (Lexra system bus)
arbitration 107
bus operations 88
byte alignment 93
commands 92
connecting devices to 107
diagram 87
interleave order 89
signals 91
terminology 88
transaction descriptions 96

lconfig configuration forms 133
load instructions 24
local memory

cache invalidation control 67
data cache 71
data memory (DMEM) 75
disabling 66
instruction cache 68
instruction cache locking 66
instruction memory (IMEM) 70
overview 65

P
PC trace (EJTAG) 121
pipeline

coprocessor interface 61
processor 9

PRID register 10
prioritized interrupts 35
processor

modules 8
RALU data path 9
System Control Processor (CP0) 9

R
RALU data path 9
RAM. See local memory
read buffer (LBC) 95
registers

BADVADDR 34
CAUSE 33
CP0 registers (table) 10
DEPC 10
DESAVE 10
DREG 10
ECAUSE 35
EPC 34
ESTATUS 35
INVTEC 36
PRID 10
STATUS 33

S
SMMU (Simple Memory Management Unit) 31

Revision 1.4 Lexra Proprietary & Confidential 153

LX8380

STATUS register 33
store instructions 24
system bus. See CBUS and LBUS
System Control Processor (CP0) 9

U
upper-kseg2 31

W
write buffer (CBUS) 78

154 Lexra Proprietary & Confidential Revision 1.4

LX8380

	Table of Contents
	List of Tables
	List of Figures
	1. Product Overview
	1.1. Introduction
	1.2. LX8380 Processor Overview
	1.3. System Level Building Blocks
	1.3.1. Simple Memory Management Unit (SMMU)
	1.3.2. Local Memory Interface (LMI)
	1.3.3. Coprocessor Interface (CI)
	1.3.4. Custom Engine Interface (CEI)
	1.3.5. Cache Bus (CBUS) Interface
	1.3.6. Lexra Bus Controller (LBC)
	1.3.7. Block Move Controller (BMC)
	1.3.8. EJTAG Debug Support
	1.3.9. Building Block Integration

	1.4. RTL Core & SmoothCore Licensing Models
	1.5. EDA Tool Support

	2. Architecture
	2.1. Hardware Architecture
	2.2. Seven Stage Pipeline
	2.3. RALU Data Path
	2.4. System Control Coprocessor (CP0)
	2.5. High-Performance Context Switch
	2.5.1. New Context Registers
	2.5.2. Reset
	2.5.3. Determining the Number of Contexts in Software
	2.5.4. Initiation of Context Switch
	2.5.5. CSW Instruction
	2.5.6. LW.CSW, LT.CSW and LQ.CSW Instructions
	2.5.7. WD[.CSW] Instructions
	2.5.8. WDLW.CSW, WDLT.CSW and WDLQ.CSW Instructions
	2.5.9. Pipeline
	2.5.10. New Context Selection
	2.5.11. Example Context Switch for Coprocessor Operation
	2.5.12. Program Access to New Registers
	2.5.13. Exceptions

	3. RISC Programming Model
	3.1. Summary of Basic RISC Instructions
	3.1.1. ALU Instructions
	3.1.2. Load and Store Instructions
	3.1.3. Conditional Move Instructions
	3.1.4. Branch and Jump Instructions
	3.1.5. Control Instructions
	3.1.6. Coprocessor Instructions

	3.2. Opcode Extension Using the Custom Engine Interface (CEI)
	3.3. Simple Memory Management Unit
	3.4. Exception Processing
	3.4.1. Exception Processing Registers
	3.4.2. Exception Processing: Entry and Exit

	3.5. Low-Overhead Prioritized Interrupts
	3.6. Coprocessors

	4. Instruction Extensions
	4.1. Context Switch and Data Transfer Operations
	4.2. Bit Field Processing Operations
	4.3. Cross Context Access Operations
	4.4. Checksum Addition
	4.5. LX8380 Instruction Summary

	5. Coprocessor Interface
	5.1. Attaching a Coprocessor Using the Coprocessor Interface (CI)
	5.2. Coprocessor Interface (CI) Signals
	5.3. Coprocessor Write Operations
	5.4. Coprocessor Read Operations
	5.5. Coprocessor Interface and Pipeline Stages
	5.5.1. Pipeline Holds
	5.5.2. Pipeline Invalidation

	6. Local Memory
	6.1. Local Memory Overview
	6.2. Cache Control Register: CCTL
	6.3. CACHE Instruction
	6.4. Instruction Cache (ICACHE) LMI
	6.5. Instruction Memory (IMEM) LMI
	6.6. Data Cache (DCACHE) LMI
	6.7. Scratch Pad Data Memory (DMEM) LMI

	7. CBUS Interface
	7.1. System Interface Configuration
	7.2. CBUS Interface Write Buffer and Out-of-Order Processing
	7.3. CBUS Line Read Interleave Order
	7.4. CBUS Byte Alignment
	7.5. CBUS Interface Signal List
	7.6. CBUS Transaction Types
	7.7. CBUS Protocol
	7.8. CBUS Transaction Timing Diagrams
	7.8.1. Back-to-Back Single Writes with Busy
	7.8.2. Line Writes
	7.8.3. Back-to-Back Single Read Requests with Busy
	7.8.4. Line Read Request
	7.8.5. Split Read Request
	7.8.6. Write with Split Read Request
	7.8.7. Returning Read Data
	7.8.8. Latency of CBUS Transactions

	8. Lexra System Bus (LBUS)
	8.1. Connecting the LX8380 to Internal Devices
	8.2. Terminology
	8.3. Bus Operations
	8.3.1. Single Data Read
	8.3.2. Line Read
	8.3.3. Burst Read
	8.3.4. Single Data Write
	8.3.5. Line Write
	8.3.6. Burst Write
	8.3.7. Split Read
	8.3.8. Write Split Read
	8.3.9. Split Data

	8.4. Signal Descriptions
	8.5. LBUS Commands
	8.6. LBUS Byte Alignment
	8.7. Split Transactions
	8.8. Lexra Bus Controller
	8.8.1. LBC Commands
	8.8.2. Write Buffer
	8.8.3. LBC Read Buffer

	8.9. Transaction Descriptions
	8.9.1. Single Data Read with No Waits
	8.9.2. Single Data Read with Target Wait
	8.9.3. Line Read with No Waits
	8.9.4. Line Read with Target Waits
	8.9.5. Line Read with Initiator Waits
	8.9.6. Burst Read
	8.9.7. Single Data Write with No Waits
	8.9.8. Single Data Write with Waits
	8.9.9. Line Write with No Waits
	8.9.10. Line Write with Target Waits
	8.9.11. Line Write with Initiator Waits
	8.9.12. Burst Write
	8.9.13. Split Read command
	8.9.14. Write Split Read
	8.9.15. Split Data

	8.10. Ordering Rules with Split Transactions
	8.11. LBC Signals
	8.12. Arbitration
	8.12.1. LBUS Rules
	8.12.2. LBC Behavior

	8.13. Connecting the LBC to LBUS

	9. Block Move Controller (BMC)
	9.1. BMC Overview
	9.2. Transfers
	9.3. Transactions
	9.4. Transaction Sequence Due to Transfer Class
	9.5. BMC Per-Channel Registers
	9.6. BMC Global Registers
	9.7. Per-Channel Register Set Selection
	9.8. Transfer Completion
	9.9. CPU-BMC arbitration
	9.10. Software Responsibility for Transfer Requests
	9.11. Example Transfer Flow

	10. EJTAG Debug
	10.1. Overview
	10.1.1. IEEE JTAG-Specific Pinout

	10.2. Program Counter (PC) Trace
	10.2.1. PC Trace DCLK - Debug Clock
	10.2.2. PC Trace PCST - Program Counter Status Trace
	10.2.3. PC Trace TPC - Target Program Counter
	10.2.4. Single-Processor PC Trace Pinout
	10.2.5. Vectored Interrupts and PC Trace
	10.2.6. Demultiplexing of TDO and TDI During PC Trace

	10.3. Data Break Exceptions for LX8380
	10.3.1. Data Break Data Matches on LBus Split Transactions
	10.3.2. Data Breaks on Write Descriptor Accesses
	10.3.3. Support for the Load-Twin Instruction

	Appendix A. Instruction Formats
	A.1. Major Opcodes
	A.2. LEXOP2 Instructions
	A.3. COP0 Instructions
	A.4. SPECIAL Instructions

	Appendix B. Lconfig Forms
	B.1. Configuration Options for the LX8380 Processor

	Appendix C. Port Descriptions
	Appendix D. Pipeline Stalls
	D.1. Stall Definitions
	D.2. Instruction Groupings
	D.3. Non-Sequential Program Flow Issue Stalls
	D.4. Load/Store Rules
	D.5. Mac Ops interlock matrix
	D.6. MVCz Stall
	D.7. TLBW Stall
	D.8. MOVECX Stall
	D.9. MMU Stalls
	D.10. Cache Miss Stalls
	D.11. Pipeline Diagrams for Non-Sequential Program Flow Issue Stalls
	D.12. Pipeline Diagram for Mac Ops Interlock Stall
	D.13. Pipeline Diagram for MVCz Stall
	D.14. Pipeline Diagram for TLBW Stall
	D.15. Pipeline Diagrams for DTLB Stalls
	D.16. Pipeline Diagrams for Cache Misses

	Index

