WikiLeaks Document Release http://wikileaks.org/wiki/CRS-RS21394 February 2, 2009 Congressional Research Service Report RS21394 Homeland Security: Defending U.S. Airspace Christopher Bolkcom, Foreign Affairs, Defense, and Trade Division June 6, 2006 Abstract. The September 11th attacks drew attention to U.S. air defense, and the 9/11 Commission Report recommended that Congress regularly assess the ability of Northern Command to defend the United States against military threats. Protecting U.S. airspace may require improvements in detecting aircraft and cruise missiles, making quick operational decisions, and intercepting them. A number of options exist in each of these areas. A variety of issues must be weighed including expediency, cost, and minimizing conflicts with civilian aviation. Order Code RS21394 Updated June 6, 2006 CRS Report for Congress Received through the CRS Web Homeland Security: Defending U.S. Airspace Christopher Bolkcom Specialist in National Defense Foreign Affairs, Defense, and Trade Division Summary The September 11th attacks drew attention to U.S. air defense, and the 9/11 http://wikileaks.org/wiki/CRS-RS21394 Commission Report recommended that Congress regularly assess the ability of Northern Command to defend the United States against military threats. Protecting U.S. airspace may require improvements in detecting aircraft and cruise missiles, making quick operational decisions, and intercepting them. A number of options exist in each of these areas. A variety of issues must be weighed including expediency, cost, and minimizing conflicts with civilian aviation. This report will be updated. Background In response to the Cold War threat of Soviet bombers and cruise missiles, the Department of Defense (DOD) established the North American Air Defense Command (NORAD) in1958.1 NORAD deployed a network of radars, fighter aircraft, and surface- to-air missiles (SAMs) around the United States. The emergence of intercontinental ballistic missiles in the 1960s drew attention away from U.S. air defenses. The air and cruise missile threat appeared to decline further with the Soviet Union's demise, and growing U.S. superiority over other hostile air forces. Because an air attack on the United States appeared unlikely, DOD relaxed its posture. By September 11, 2001, only 14 Air Force fighters at 7 bases were assigned to protect the continental United States (CONUS) from air attacks.2 This number has subsequently been increased to over 100. Today, NORAD operates radars in the United States and Canada, oriented outward, to detect air attacks from foreign countries. NORAD augments these radars by communicating with the Federal Aviation Administration (FAA), which operates its own radars, and by flying E-3 AWACS aircraft. NORAD commands F-15 Eagle, F-16 Falcon, and Canadian CF-18 fighter aircraft flying combat air patrols (CAP) and on strip alert (prepared to take off on short notice). NORAD's Command and Control (C2) centers 1 For more information about cruise missiles and proliferation see CRS Report RS21252, by Andrew Feickert. 2 Adam Hebert, "Ongoing Operations Made NORAD Response to Sept. 11 `Seamless,'" Inside the Air Force, Dec. 21, 2001. Congressional Research Service ~ The Library of Congress CRS-2 are located at Cheyenne Mountain Air Station (CO), Elmendorf AFB (AK), Tyndal AFB (FL), and Canadian Forces Base, (Winnipeg Manitoba). The Air National Guard is also a key organization in continental air defense. In July 2004, it was reported that The Air Force had permanently transferred the homeland defense air patrol mission to the Air National Guard, shifting more than $84 million from the Air Force operations and maintenance budget.3 Due to the September 11 attacks, and the growing threat of cruise missiles, some policy makers are re-evaluating today's modest U.S. air defenses. Improving defense of U.S. airspace poses numerous challenges to defense planners, who must assess the pros and cons of several military options. As part of its oversight role, Congress may be called upon to assess these options and determine the most effective mix of systems employed. Indeed, the 9/11 Commission Report [http://www.9-11commission.gov/] specifically recommended that DOD and congressional oversight committees "should regularly assess the adequacy of Northern Command's strategies and planning to defend the United States against military threats to the homeland." Subsequent congressional legislation on intelligence reform (H.R. 10 and S. 2845) do not directly address this recommendation. http://wikileaks.org/wiki/CRS-RS21394 Air Defense Challenges Effectively protecting U.S. airspace requires detecting threatening aircraft and cruise missiles, making decisions on how to address these threats (called "command and control", or C2), and negating these threats. On June 9, 2004, a small aircraft carrying the governor of Kentucky flew into restricted airspace around Washington, DC. The misidentified aircraft caused panic among Capitol Hill employees, and two F-15s were scrambled to intercept the aircraft.4 This event suggests that 2½ years after the September 11 attacks, effective defense of U.S. airspace is still in question. Surveillance. Detecting and tracking airborne threats to the United States are complicated by environment and enemy tactics. The large volume of airspace that must be surveyed presents one key environmental challenge. Airspace over the continental United States is estimated at approximately 3 million square miles.5 Enemy tactics could include flying low to the ground, which makes detection difficult, or applying stealth technology, which reduces an aircraft's vulnerability to radar detection. As the September 11th hijackers demonstrated, turning commercial or civil aircraft into weapons is another tactic that would make threat detection difficult. Command & Control. Expediently identifying airborne threats, and accurately verifying that they are not civilian or friendly military aircraft is a key air defense challenge. The large amount of air traffic within CONUS will likely make separating "friend from foe" difficult. FAA data show that on a given day, over 80,000 distinct domestic commercial aircraft movements (e.g., departures, overflights) take place over 3 Cynthia Di Pasquale, "Air Sovereignty Alert Becomes Permanent Air Guard Mission," Inside the Air Force, July 16, 2004. 4 David Hughes, "Capitol Hill Investigates King Air Security Incident," Aviation Week & Space Technology, July 12, 2004. 5 R.W. Rogers, "Terrorists Exploited U.S. Air Defense," Newport News Daily Press, Oct.7, 2001. CRS-3 CONUS.6 These 80,000 aircraft movements do not include international flights, or the approximately 200,000 civil aircraft in the United States that fly some 24 million flight hours annually. Nor does this number include military aircraft that fly within both civilian and military airspace. Air defense C2 over CONUS is further complicated by the fact that decision making will not be a solely military enterprise. Civil entities such as the FAA, and the U.S. Customs Service, and military authorities will require seamless communications and hardware interoperability to make effective decisions. Intercept. Anti-aircraft artillery, surface-to-air missiles (SAMs), or military aircraft can shoot down enemy aircraft and cruise missiles. In dire situations, hijacked civilian aircraft may also need to be shot down, although negating this threat in other ways will likely be preferred. Minimizing civilian casualties both in the air and on the ground may be a key challenge, especially if the threatening aircraft or missile carries weapons of mass destruction. Adequately covering the large number of assets (e.g., cities, nuclear power plants, military facilities, national buildings and monuments) will also be challenging. Options and Issues http://wikileaks.org/wiki/CRS-RS21394 Following the terrorist attacks of September 11, 2001, DOD increased the resources devoted to CONUS air defense by deploying an aircraft carrier to New York harbor and by flying fighter CAPs over major cities. NATO allies contributed to this effort (called Operation Noble Eagle) by flying AWACS aircraft over CONUS. Although these efforts were welcome, they appear unsustainable in the long term, as Operation Noble Eagle costs DOD about $3 billion per year.7 DOD must still develop a long-term plan for improving air and cruise missile defense of CONUS. When considering air defense options DOD may evaluate factors such as expediency, potential impact on commercial and civil air traffic, potential competition with other military needs, and minimizing collateral damage and civilian casualties. Designing a defense that can address the whole range of potential threats (e.g., enemy bombers, stealthy cruise missiles, and hijacked commercial aircraft), yet be optimized to address the most likely or most dangerous threat may also be a key challenge. Cost is another key consideration. Estimated costs for air and cruise missile defense of CONUS vary widely depending on assumptions regarding the threat (e.g., number of attackers, flight characteristics, and payload), what is to be protected, system effectiveness (the number of "leakers" that is acceptable) and the exact mix of systems deployed. A 1986 study estimated that a system capable of defeating a Soviet air and cruise missile attack would cost on the order of $70 billion.8 A 1989 study estimated that fielding a system that could defend the 20 largest U.S. cities and 50 military installations from a large scale air and cruise missile attack would cost between $54 billion and $170 billion, 6 [http://www.apo.data.faa.gov/faaatadsall.htm]. 7 Elizabeth Rees. "USAF Forced to Pay `05 Noble Eagle Bill; Money not in Supplemental. Inside the Air Force. Feb. 11, 2005. 8 Barry Blechman. "The Macroeconomics of Strategic Defenses," International Security, Winter 1986-1987, pp. 33-70. CRS-4 depending on the exact mix of forces deployed.9 A more contemporary study suggests that an air and cruise missile defense system for CONUS could cost in the neighborhood of $30 billion, with annual operating costs on the order of $1 billion.10 Surveillance. Surveillance radars can be divided into three categories: ground- based, airborne, and space-based. The primary advantage of ground-based radars is that they tend to be less expensive to field and operate than other radars. A shortcoming of ground-based radars is that they tend to have trouble detecting low flying aircraft. Features such as mountains and buildings block or "clutter" the radar picture, and the Earth's curvature leaves gaps in coverage that low-flying threats can exploit. NORAD already operates a network of ground based radars, and it will likely serve as one component of a CONUS defense surveillance system. Improvements in this network may be considered however, including upgrading the radar to improve its ability to detect stealthy threats, deploying more radars to cover gaps in coverage, and fielding radars that survey airspace within CONUS, to augment today's outward looking radars. Airborne radars offer some advantages over ground based radars: they are more mobile. Because they operate tens of thousands of feet above the Earth, they are not as http://wikileaks.org/wiki/CRS-RS21394 subject to radar clutter, and are thus well suited to detect low flying, and in some cases stealthy, aircraft. The E-3 AWACS and E-2C Hawkeye surveillance aircraft are examples of current airborne sensors. Their main disadvantage is that they cost more to field and operate than ground-based radars. The Air Force estimates that the E-3 alone costs $123 million in 1998 dollars. The FPS-117 long range air search radar that forms the backbone of NORAD's North Warning System, in contrast costs between $5.8 and $22 million.11 Operating costs for aircraft are similarly higher than operating costs for ground systems. Unmanned Aerial Vehicles (UAVs) use has increased militarily and commercially. Some suggest that UAVs could help conduct surveillance over CONUS for enemy aircraft and cruise missiles. While UAVs cost less to field and operate than manned aircraft, concerns exist about operating these aircraft over populated areas or in airspace heavily used by civilian aircraft. The FAA currently prohibits UAVs from flying in commercial U.S. airspace, although these restrictions could be changed. Also, today's UAVs operate sensors optimized for ground surveillance, not air surveillance. Using UAVs for air defense would require replacing the sensors on current UAVs or fielding new UAVs. Radars deployed on aerostats, tethered, unmanned balloons, are less expensive than surveillance aircraft, and can also detect low flying aircraft and cruise missiles. Aerostats are attractive because of their long "on-station time." They can remain aloft for months. Aerostats cannot fly, cannot be moved rapidly, and may prove some hazard to civilian aircraft. Aerostats are currently deployed by DOD for military purposes, and by the U.S. Customs Service to search for drug smuggling aircraft and boats. Deploying radars on manned or unmanned airships (blimps) may be a middle ground between aircraft and 9 Arthur Charo, Continental Air Defense: A Neglected Dimension of Strategic Defense, CSIA, Occasional Paper no. 7, 1990, p. 43. 10 Protecting the American Homeland, Brookings Institution, Chapter 2, 2002. 11 Paul Mann, "New Air Defense Pact Provides Canadian Takeover of DEW Line," Aviation Week & Space Technology, Mar. 25, 1985. CRS-5 aerostats: costs and flexibility lie somewhere between the two. NORAD and has reportedly expressed interest in using airships for homeland defense. DOD is also studying deploying radars on satellites designed to detect and track moving ground targets, not airborne targets. In FY2005, appropriations conferees cut $252 million from the Air Force's $327 million request for space based radar funding.12 DOD is requesting $266 million for FY2007. The first satellite launch of the system is currently planned to occur in FY2015. Space-based radars applicable to air defense surveillance may be developed in the long term, but questions about technical feasibility and cost effectiveness remain. Command & Control. Several options exist for improving NORAD's air defense C2 capabilities. One menu of options focuses on improving NORAD's ability to detect, identify, and track threats originating from CONUS. DOD has engaged in a $30 million upgrade of NORAD's computers to better integrate FAA and military airspace management systems.13 Other options that might be pursued would be to make permanent, ad hoc C2 relationships devised after September 11th to integrate NORAD radars with Customs Service aerostats and with the Navy's AEGIS ship radars. NORAD http://wikileaks.org/wiki/CRS-RS21394 may also wish to find ways to leverage the Civil Air Patrol for air defense. The Civil Air Patrol is an auxiliary of the Air Force and typically flies disaster relief, search and rescue, and counter drug surveillance missions. Properly integrated with NORAD C2, however, the Civil Air Patrol might perform niche air defense functions. A second menu of options pertains to improving NORAD's ability to counter an attack by low flying and stealthy cruise missiles. DOD has attempted to improve theater air and cruise missile defenses by promoting interoperability among the services and creating a Single Integrated Air Picture. DOD may consider expanding these efforts to make them applicable to CONUS air defense. It is not clear that the C2 improvements designed to counter cruise missile attacks would also help detect and counter threats originating from inside CONUS. Another option for improving C2 would be to mandate improved Identification Friend or Foe hardware and procedures for civilian aircraft that operate near high risk areas. This could help reduce the number of accidental incursions into restricted airspace (which require a military response and risk downing a civilian aircraft) but would likely be resisted by civilian pilots due to increased costs. Intercept. Similar to the options for air defense surveillance, options to intercept aircraft and cruise missiles can be divided into surface- and air-based, each offering strengths and weaknesses. Fighter aircraft are well suited to shoot down other aircraft and cruise missiles. They are inherently deployable and flexible. They also tend to cost more to procure and operate than other intercept options. Immediately following September 11th, the Air Force began 24 hour combat air patrols over New York and Washington, and intermittent patrols over other major cities. Cost estimates of these patrols vary between $100 million to $200 million per month.14 These costs, the strains they put on pilots and 12 H.R. 4613 (108-622) July 20, 2004. p. 325. 13 Gail Kaufman, "Small Job to Shape USAF Network Plans," Defense News, Jan. 6, 2003. 14 Eric Schmitt, "U.S. to End 24-Hour Fighter Jet Patrols Over New York," New York Times, (continued...) CRS-6 other personnel, and the unanticipated wear and tear they put on fighter aircraft have led some to recommend reducing these patrols and search for other intercept solutions.15 The costs of using combat aircraft for air defense might be reduced in three ways. First, combat aircraft could be kept on 15 minute strip alert, rather than having them fly patrols. During the Cold War, NORAD kept aircraft on strip alert at over 100 sites.16 Some loss of responsiveness would be expected. On January 6, 2002 a private aircraft flew into an office building in Tampa, FL, passing over MacDill AFB in the process. The Air Force's inability to intercept the aircraft before it crashed suggests how strip alert may be less responsive to intercept needs than fighter CAP. Another way to reduce the cost of using combat aircraft for air defense would be to design aircraft specifically for this mission. One company claims it can build an interceptor for $4 million, a fraction of the cost of modern fighters.17 The feasibility of building such a low cost combat aircraft is still unproven. A third potential way of reducing aircraft costs would be to field air-to-air missiles on UAVs. The Air Force is currently experimenting with the Stinger on its Predator UAV, which reportedly engaged in a dogfight with an Iraqi fighter aircraft.18 DOD operates many SAM systems. The Army's Patriot, the Marine Corps' Hawk, http://wikileaks.org/wiki/CRS-RS21394 and the Navy's ship-based Standard Missile, are examples of SAMs that could be part of a CONUS air defense. SAMs tend to be less expensive than combat aircraft, and carry more missiles. The Hawk, for instance, costs approximately $25 million, and a battery can fire 48 missiles.19 SAM warheads are generally larger than air-to-air missile warheads, which provides more destructive power. Unlike aircraft, SAMs cannot chase enemy aircraft and cruise missiles, and their deployment must be carefully planned. Unlike combat aircraft, SAMs cannot visually identify a target and determine if it is hostile. Regardless of which systems are deployed, a CONUS air and cruise missile defense system will likely be made up of layered elements. A mix of fighter aircraft and SAMs (or other options) is typically more attractive than deploying only fighters or only SAMs. Similarly, defense planners will likely lean toward a mix of surveillance platforms and sensors rather than just one type. A mix of systems reduces the chance of "single point failure," complicates an adversary's attack planning, and can make a more effective system. Determining the best mix, however, may be critical. 14 (...continued) Mar. 18, 2002. 15 In the two years following September 11, 2001, NORAD scrambled fighters or diverted patrols more than 1,500 times. Source: Catherine Tsai, "Two Years After Terrorist Attacks, Northcom Poised to Become Fully Operational," Army Times.com, Sept. 11, 2003. 16 Adam Hebert, "DoD Weighs Air Defense options as Patrols Become Unsupportable," Inside the Air Force, Jan. 25, 2002, p. 1. 17 Greg Griffin, "Colo. Firm Designs Patrol Jet," Denver Post, Feb. 28, 2002, p. 2D. 18 "The Predator," 60 Minutes II, aired on CBS, Jan. 9, 2003. 19 "Hawk Surface-to-Air Missile System," Fact File, [http://www.hqmc.usmc.mil].